Strength of Materials Or Solid Mechanics
Centroid and Moment of Inertia
Marks 1Marks 2
Pure Bending
Marks 1Marks 2
Shear Stress In Beams
Marks 1Marks 2
Strain Energy Method
Marks 1Marks 2
Columns and Struts
Marks 1Marks 2
Complex Stress
Marks 1Marks 2
Deflection of Beams
Marks 1Marks 2
Thin Cylinder
Marks 1Marks 2
Simple Stresses
Marks 1Marks 2
Shear Force and Bending Moment
Marks 1Marks 2
Propped Cantilever Beam
Marks 1Marks 2
1
GATE CE 2012
MCQ (Single Correct Answer)
+1
-0.3
The Poisson's ratio is defined as
A
$$\left| {{{axial\,stress} \over {lateral\,stress}}} \right|$$
B
$$\left| {{{lateral\,strain} \over {axial\,strain}}} \right|$$
C
$$\left| {{{lateral\,stress} \over {axial\,stress}}} \right|$$
D
$$\left| {{{axial\,strain} \over {lateral\,strain}}} \right|$$
2
GATE CE 2010
MCQ (Single Correct Answer)
+1
-0.3
The number of independent elastic constants for a linear elastic isotropic and homogeneous material is
A
4
B
3
C
2
D
1
3
GATE CE 2007
MCQ (Single Correct Answer)
+1
-0.3
For an isotropic material, the relationship between the young’s modulus (E), shear modulus (G) and Poisson’s ratio (μ) is given by
A
$$G\;=\;\frac E{\left[(1+\mu)\right]}$$
B
$$G\;=\;\frac E{\left[2(1+\mu)\right]}$$
C
$$G\;=\;\frac E{\left[(1+2\mu)\right]}$$
D
$$G\;=\;\frac E{\left[2(1+2\mu)\right]}$$
4
GATE CE 2002
MCQ (Single Correct Answer)
+1
-0.3
The shear modulus (G), modulus of elasticity (E) and the Poisson's ratio ($$\mu$$) of a material are related as
A
$$G\;=\;\frac E{\left[2(1+\mu)\right]}$$
B
$$E\;=\;\frac G{\left[2(1+\mu)\right]}$$
C
$$G\;=\;\frac E{\left[2(1-\mu)\right]}$$
D
$$G\;=\;\frac E{\left[2(\mu - 1)\right]}$$
GATE CE Subjects
Engineering Mechanics
Strength of Materials Or Solid Mechanics
Structural Analysis
Construction Material and Management
Reinforced Cement Concrete
Steel Structures
Geotechnical Engineering
Fluid Mechanics and Hydraulic Machines
Hydrology
Irrigation
Geomatics Engineering Or Surveying
Environmental Engineering
Transportation Engineering
Engineering Mathematics
General Aptitude