1
GATE ECE 2016 Set 2
Numerical
+2
-0
The matrix $$A = \left[ {\matrix{
a & 0 & 3 & 7 \cr
2 & 5 & 1 & 3 \cr
0 & 0 & 2 & 4 \cr
0 & 0 & 0 & b \cr
} } \right]$$ has det
$$(A)=100$$ and trace $$(A)=14.$$ The value of $$\left| {a - b} \right|$$ is ___________.
$$(A)=100$$ and trace $$(A)=14.$$ The value of $$\left| {a - b} \right|$$ is ___________.
Your input ____
2
GATE ECE 2016 Set 1
Numerical
+2
-0
A sequence $$x\left[ n \right]$$ is specified as
$$$\left[ {\matrix{
{x\left[ n \right]} \cr
{x\left[ {n - 1} \right]} \cr
} } \right] = {\left[ {\matrix{
1 & 1 \cr
1 & 0 \cr
} } \right]^n}\left[ {\matrix{
1 \cr
0 \cr
} } \right],\,\,for\,\,n \ge 2.$$$
The initial conditions are $$x\left[ 0 \right] = 1,\,\,x\left[ 1 \right] = 1$$ and $$x\left[ n \right] = 0$$ for $$n < 0.$$ The value of $$x\left[ {12} \right]$$ is __________.
The initial conditions are $$x\left[ 0 \right] = 1,\,\,x\left[ 1 \right] = 1$$ and $$x\left[ n \right] = 0$$ for $$n < 0.$$ The value of $$x\left[ {12} \right]$$ is __________.
Your input ____
3
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+2
-0.6
If the vectors $${e_1} = \left( {1,0,2} \right),\,{e_2} = \left( {0,1,0} \right)$$ and $${e_3} = \left( { - 2,0,1} \right)$$ form an orthogonal basis of the three dimensional real space $${R^3},$$ then the vectors $$u = \left( {4,3, - 3} \right) \in {R^3}$$ can be expressed as
4
GATE ECE 2009
MCQ (Single Correct Answer)
+2
-0.6
The eigen values of the following matrix $$\left[ {\matrix{
{ - 1} & 3 & 5 \cr
{ - 3} & { - 1} & 6 \cr
0 & 0 & 3 \cr
} } \right]$$ are
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics