Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2002
MCQ (Single Correct Answer)
+2
-0.6
The Laplace transform of a continuous - time signal x(t) is $$X\left( s \right) = {{5 - s} \over {{s^2} - s - 2}}$$. If the Fourier transform of tyhis signal exists, then x(t) is
A
$${e^{2t}}u\left( t \right) - 2\,{e^{ - t}}u\left( t \right)$$
B
$$ - {e^{2t}}u\left( { - t} \right) + 2\,{e^{ - t}}u\left( t \right)$$
C
$$ - {e^{2t}}u\left( { - t} \right) - 2\,{e^{ - t}}u\left( t \right)$$
D
$${e^{2t}}u\left( { - t} \right) - 2\,{e^{ - t}}u\left( t \right)$$
2
GATE ECE 1996
MCQ (Single Correct Answer)
+2
-0.6
The inverse Laplace transform of the function $${{s + 5} \over {\left( {s + 1} \right)\left( {s + 3} \right)}}$$ is
A
$$\,2{e^{ - t}}\, - \,{e^{ \to - 3t}}$$
B
$$\,2{e^{ - t}}\, + \,{e^{ \to - 3t}}$$
C
$${e^{ - t}}\, - \,2\,{e^{ - 3t}}\,$$
D
$$\,\,{e^{ - t}}\, + \,2{e^{ - 3t}}$$
3
GATE ECE 1993
Fill in the Blanks
+2
-0
The Laplace transform of the periodioc function f(t) describe4d by the curve below, i.e., $$f\left( t \right) = \left\{ {\matrix{ {\sin \,t\,\,\,if\,\left( {2n - 1} \right)\pi \le t \le 2n\pi } \cr {0\,\,\,\,\,\,\,\,otherwise} \cr } } \right.$$
is _________. (fill in the blank), n is an integer. GATE ECE 1993 Signals and Systems - Continuous Time Signal Laplace Transform Question 20 English
4
GATE ECE 1993
MCQ (Single Correct Answer)
+2
-0.6
If $$F\left( s \right) = L\left[ {f\left( t \right)} \right] = {K \over {\left( {s + 1} \right)\,\left( {{s^2} + 4} \right)}}$$ then $$\matrix{ {Lim\,f\,\left( t \right)} \cr {t \to \infty } \cr } $$ is given by
A
K/4
B
zero
C
infinite
D
undefined
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics