Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
The impulse response $$h\left[ n \right]$$ of a linear time invariant system is given as
$$h\left[ n \right] = \left\{ {\matrix{ { - 2\sqrt 2 ,} & {n = 1, - 1} \cr {4\sqrt 2 ,} & {n = 2, - 2} \cr {0,} & {otherwise} \cr } } \right.$$

If the input to the above system is the sequence $${e^{j\pi n/4}},$$ then the output is

A
$$4\sqrt 2 \,{\mkern 1mu} {e^{j\,\pi \,n\,\,/\,4}}$$
B
$$4\sqrt 2 \,{\mkern 1mu} {e^{ - j\,\pi \,n\,/4}}$$
C
$$4{\mkern 1mu} {e^{j\,\pi \,n\,/4}}$$
D
$$ - 4{\mkern 1mu} {e^{j\,\pi \,n\,/4}}$$
2
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
Let P be linearity, Q be time-invariance, R be causality and S be stability.

A discrete time system has the input-output relationship,


$$y\left( n \right) = \left\{ {\matrix{ {x\left( n \right),} & {n \ge 1} \cr {0,} & {n = 0} \cr {x\left( {n + 1} \right),} & {n \le - 1} \cr } } \right.$$

Where $$x\left( n \right)\,$$ is the input and $$y\left( n \right)\,$$ is the output. The above system has the properties

A
P, S but not Q, R
B
P, Q, S but not R
C
P, Q, R, S
D
Q, R, S but not P
3
GATE ECE 2002
MCQ (Single Correct Answer)
+2
-0.6
If the impulse response of a discrete-time system is $$h\left[ n \right]\, = \, - {5^n}\,\,u\left[ { - n\, - 1} \right],$$ then the system function $$H\left( z \right)\,\,\,$$ is equal to
A
$${{ - z} \over {z - 5}}$$ and the system is stable.
B
$${z \over {z - 5}}$$ and the system is stable.
C
$${{ - z} \over {z - 5}}$$ and the system is unstable.
D
$${z \over {z - 5}}$$ and the system is unstable.
4
GATE ECE 1992
MCQ (Single Correct Answer)
+2
-0.6
A linear discrete - time system has the characteristic equation, $${z^3} - 0.81\,\,z = 0.$$ The system
A
is stable.
B
is marginally stable.
C
is unstable.
D
stability cannot be assessed from the given information.
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics