Signals and Systems
Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Continuous and Discrete Time Signals
Marks 1Marks 2
Continuous Time Signal Fourier Transform
Marks 1Marks 2
Continuous Time Periodic Signal Fourier Series
Marks 1Marks 2Marks 5
Discrete Time Signal Z Transformation
Marks 1Marks 2
Miscellaneous
Marks 2
Continuous Time Signal Laplace Transform
Marks 1Marks 2
Sampling Theorem
Marks 1Marks 2
1
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
The fourier series expansion $$$f\left(t\right)\;=\;a_0\;+\;\sum_{n=1}^\infty a_n\cos\;n\omega t\;+\;b_n\sin\;n\omega t$$$ of the periodic signal shown below will contain the following nonzero terms GATE EE 2011 Signals and Systems - Continuous Time Periodic Signal Fourier Series Question 23 English
A
$$a_0\;and\;b_n\;,\;n=1,\;3,\;5,\;..............\infty$$
B
$$a_0\;and\;a_n\;,\;n=1,\;2,\;3,\;..............\infty$$
C
$$a_0\;,\;a_n\;and\;b_n\;,\;n=1,\;2,\;3,\;..............\infty$$
D
$$a_0\;and\;a_n\;,\;n=1,\;3,\;5,\;..............\infty$$
2
GATE EE 2010
MCQ (Single Correct Answer)
+1
-0.3
The second harmonic component of the periodic waveform given in the figure has an amplitude of GATE EE 2010 Signals and Systems - Continuous Time Periodic Signal Fourier Series Question 22 English
A
0
B
1
C
$$2/\mathrm\pi$$
D
$$\sqrt5$$
3
GATE EE 2010
MCQ (Single Correct Answer)
+1
-0.3
The period of the signal $$x\left(t\right)=8\sin\left(0.8\mathrm{Ï€t}+\frac{\mathrm\pi}4\right)$$ is
A
$$0.4\;\mathrm\pi\;\mathrm s$$
B
$$0.8\;\mathrm\pi\;\mathrm s$$
C
1.25 s
D
2.5 s
4
GATE EE 2006
MCQ (Single Correct Answer)
+1
-0.3
$$x(t)$$ is a real valued function of a real variable with period $$T.$$ Its trigonometric. Fourier Series expansion contains no terms of frequency
$$\omega = 2\pi \left( {2k} \right)/T;\,\,k = 1,2,........$$ Also, no sine terms are present. Then $$x(t)$$ satisfies the equation
A
$$x\left( t \right) = - x\left( {t - T} \right)$$
B
$$x\left( t \right) = x\left( {T - t} \right) = - x\left( { - t} \right)$$
C
$$x\left( t \right) = x\left( {T - t} \right) = - x\left( {t - T/2} \right)$$
D
$$x\left( t \right) = x\left( {t - T} \right) = - x\left( {t - T/2} \right)$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement