1
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
The electric field of an electromagnetic wave propagating in the positive z-direction is given by $$$E = {\widehat a_x}\sin \left( {\omega t - \beta z} \right) + {\widehat a_y}\sin \left( {\omega t - \beta z + \pi /2} \right)$$$

The wave is

A
linearly polarized in the z-direction
B
elliptically polarized
C
left-hand circularly polarized
D
right-hand circularly polarized
2
GATE ECE 2005
MCQ (Single Correct Answer)
+1
-0.3
The magnetic field intensity vector of a plane wave is given by
$$\overline H \left( {x,y,z,t} \right) = 10\,\sin \left( {50000t + 0.004x + 30} \right){\mathop a\limits^ \cap _y}$$
Where $${\mathop a\limits^ \cap _y}$$ denotes the unit vector in $$y$$ direction. The wave is propagating with a phase velocity
A
$$5 \times {10^4}\,\,m/s$$
B
$$-3 \times {10^8}\,\,m/s$$
C
$$-1.25 \times {10^7}\,\,m/s$$
D
$$3 \times {10^8}\,\,m/s$$
3
GATE ECE 2003
MCQ (Single Correct Answer)
+1
-0.3
The depth of penetration of electromagnetic wave in a medium having conductivity $$\sigma $$ at a frequency of 1 KHz is 25 cm. The depth of penetration at a frequency of 4 KHz will be
A
6.25 cm
B
12.50 cm
C
50.00 cm
D
100.00 cm
4
GATE ECE 2001
MCQ (Single Correct Answer)
+1
-0.3
If a plane electromagnetic wave satisfies the equation $${{{\partial ^2}\,{E_x}} \over {\partial \,{z^2}}} = \,{c^2}{{{\partial ^2}\,{E_x}} \over {\partial \,{t^2}}},$$ the wave propagates in the
A
x-direction
B
z-direction
C
y-direction
D
x z plane at an angle of $${{{45}^ \circ }}$$ between the x and z directions
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics