1
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
The eigen values and the correspondinng eigen vectors of a $$2 \times 2$$ matrix are given by
Eigen value
$${\lambda _1} = 8$$
$${\lambda _2} = 4$$
Eigen vector
$${V_1} = \left[ {\matrix{
1 \cr
1 \cr
} } \right]$$
$${V_2} = \left[ {\matrix{
1 \cr
-1 \cr
} } \right]$$
The matrix is
2
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
Given the matrix $$\left[ {\matrix{
{ - 4} & 2 \cr
4 & 3 \cr
} } \right],$$ the eigen vector is
3
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
Given an orthogonal matrix $$A = \left[ {\matrix{
1 & 1 & 1 & 1 \cr
1 & 1 & { - 1} & { - 1} \cr
1 & { - 1} & 0 & 0 \cr
0 & 0 & 1 & { - 1} \cr
} } \right]$$ then the value of $${\left( {A{A^T}} \right)^{ - 1}}$$ is
4
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
If $$A = \left[ {\matrix{
2 & { - 0.1} \cr
0 & 3 \cr
} } \right]$$ and $${A^{ - 1}} = \left[ {\matrix{
{{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} & a \cr
0 & b \cr
} } \right]$$ then $$a+b=$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics