1
GATE ECE 2014 Set 4
Numerical
+1
-0
The directional derivative of $$f\left( {x,y} \right) = {{xy} \over {\sqrt 2 }}\left( {x + y} \right)$$ at $$(1, 1)$$ in the direction of the unit vector at an angle of $${\pi \over 4}$$ with $$y-$$axis, is given by ________.
Your input ____
2
GATE ECE 2014 Set 4
Numerical
+1
-0
The magnitude of the gradient for the function $$f\left( {x,y,z} \right) = {x^2} + 3{y^2} + {z^3}\,\,$$ at the point $$(1,1,1)$$ is _________.
Your input ____
3
GATE ECE 2014 Set 2
Numerical
+1
-0
If $$\,\overrightarrow r = x\widehat a{}_x + y\widehat a{}_y + z\widehat a{}_z\,\,\,\,$$ and $$\,\left| {\overrightarrow r } \right| = r,$$ then div $$\left( {{r^2}\nabla \left( {\ln \,r} \right)} \right) $$ = ________.
Your input ____
4
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
Consider a vector field $$\overrightarrow A \left( {\overrightarrow r } \right).$$ The closed loop line integral $$\oint {\overrightarrow A \bullet \overrightarrow {dl} } $$ can be expressed as
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics