Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
The Dirac delta function $$\delta (t)$$ is defined as
A
$$\delta (t) = \left\{ {\matrix{ {1,} & {t = 0} \cr {0,} & {otherwise} \cr } } \right.$$
B
$$\delta (t) = \left\{ {\matrix{ {\infty ,} & {t = 0} \cr {0,} & {otherwise} \cr } } \right.$$
C
$$\delta (t) = \left\{ {\matrix{ {1,} & {t = 0} \cr {0,} & {otherwise\,\,\,and\,\,\int\limits_{ - \infty }^\infty {\delta (t)\,dt = 1} } \cr } } \right.\,\,$$
D
$$\delta (t) = \left\{ {\matrix{ {\infty ,} & {t = 0} \cr {0,} & {otherwise\,\,\,and\,\,\int\limits_{ - \infty }^\infty {\delta (t)\,dt = 1} } \cr } } \right.\,\,$$
2
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
A solution for the differential equation $$\mathop x\limits^. $$(t) + 2 x (t) = $$\delta (t)$$ with intial condition $$x({0^ - }) = 0$$ is
A
$${e^{ - 2t}}\,u(t)$$
B
$${e^{2t}}\,u(t)$$
C
$${e^{ - t}}\,u(t)$$
D
$${e^t}\,u(t)$$
3
GATE ECE 2005
MCQ (Single Correct Answer)
+1
-0.3
The function x(t) is shown in Fig. Even and odd parts of a unit-step function u(t) are respectively. GATE ECE 2005 Signals and Systems - Miscellaneous Question 19 English
A
$${1 \over 2},\,{1 \over 2}x(t)$$
B
$$-{1 \over 2},\,{1 \over 2}x(t)$$
C
$${1 \over 2},\,-{1 \over 2}x(t)$$
D
$$-{1 \over 2},\,-{1 \over 2}x(t)$$
4
GATE ECE 2001
MCQ (Single Correct Answer)
+1
-0.3
Let $$\delta (t)$$ denote the delta function. The value of the the integral $$\int\limits_{ - \infty }^\infty {\delta (t)} \,\,\cos \left( {{{3\,\,t} \over 2}} \right)dt$$ is
A
1
B
- 1
C
0
D
$${\pi /2}$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics