Network Theory
Network Elements
Marks 1Marks 2Marks 5
Network Theorems
Marks 1Marks 2Marks 5
Sinusoidal Steady State Response
Marks 1Marks 2Marks 5Marks 8
Network Graphs
Marks 1Marks 2
State Equations For Networks
Marks 5
1
GATE ECE 2012
MCQ (Single Correct Answer)
+1
-0.33
The average power delivered to an impedance $(4-j 3) \Omega$ by a current $5 \cos (100 \pi t+100) A$ is
A
$44.2 \mathrm{~W}$
B
$50 \mathrm{~W}$
C
$62.5 \mathrm{~W}$
D
$125 \mathrm{~W}$
2
GATE ECE 2009
MCQ (Single Correct Answer)
+1
-0.3

In the interconnection of ideal sources shown in the figure, it is known that the 60V source is absorbing power.

GATE ECE 2009 Network Theory - Network Elements Question 35 English

Which of the following can be the value of the current source I?

A
10 A
B
13 A
C
15 A
D
18 A
3
GATE ECE 2004
MCQ (Single Correct Answer)
+1
-0.3

The equivalent inductance measured between the terminals 1 and 2 for the circuit shown in figure, is

GATE ECE 2004 Network Theory - Network Elements Question 36 English
A
L1 + L2 + M
B
L1 + L2 - M
C
L1 + L2 + 2M
D
L1 + L2 - 2M
4
GATE ECE 2002
MCQ (Single Correct Answer)
+1
-0.3

The differential equation for the current i(t) in the circuit of Fig. is

GATE ECE 2002 Network Theory - Network Elements Question 37 English
A
$$2\;\frac{\operatorname d^2\mathrm i}{\operatorname d\mathrm t^2}+\;2\;\frac{\operatorname d\mathrm i}{\mathrm{dt}}\;+\;\mathrm i(\mathrm t)\;=\sin\left(\mathrm t\right)$$
B
$$\frac{\operatorname d^2\mathrm i}{\operatorname d\mathrm t^2}+\;2\;\frac{\operatorname d\mathrm i}{\mathrm{dt}}\;+\;2\mathrm i(\mathrm t)\;=\cos\left(\mathrm t\right)$$
C
$$2\;\frac{\operatorname d^2\mathrm i}{\operatorname d\mathrm t^2}+\;2\;\frac{\operatorname d\mathrm i}{\mathrm{dt}}\;+\;\mathrm i(\mathrm t)\;=\cos\left(\mathrm t\right)$$
D
$$\frac{\operatorname d^2\mathrm i}{\operatorname d\mathrm t^2}+\;2\;\frac{\operatorname d\mathrm i}{\mathrm{dt}}\;+\;2\mathrm i(\mathrm t)\;=\sin\left(\mathrm t\right)$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics