Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2009
MCQ (Single Correct Answer)
+2
-0.6
The 4-point Discrete Fourier Transform (DFT) of a discrete time sequence $$\left\{ {1,\,0,\,2,\,3} \right\}$$ is
A
$$\left[ {0,\, - 2 + 2j,\,2,\, - 2 - 2j} \right]$$
B
$$\left[ {2,\,2 + 2j,\,6,\,2\, - 2j} \right]$$
C
$$\left[ {6,\,1 - 3j,\,2,\,1 + 3j} \right]$$
D
$$\left[ {6,\, - 1 + 3j,\,0,\, - 1\, - 3j} \right]$$
2
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
{x(n)} is a real-valued periodic sequence with a period N. x(n) and X(k) form N-point. Discrete Fourier Transform (DFT) pairs. The DFT Y(k) of the sequence
y (n) = $${1 \over N}\,\sum\limits_{r = 0}^{N - 1} x \,\left( r \right)x\,(n + r\,)$$ is
A
$${\left| {X(k)} \right|^2}$$
B
$${1 \over N}\,\sum\limits_{r = 0}^{N - 1} X \,\left( r \right){X^*}\,(k + r\,)$$
C
$${1 \over N}\,\,\sum\limits_{r = 0}^{N - 1} X \,(r\,)X(k + r)$$
D
0
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics