Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2015 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Suppose x $$\left[ n \right]$$ is an absolutely summable discrete-time signal. Its z-transform is a rational function with two poles and two zeroes. The poles are at z = ± 2j. Which one of the following statements is TRUE for the signal x=$$\left[ n \right]$$ ?
A
It is a finite duration signal.
B
It is a causal signal.
C
It is a non-causal signal.
D
It is a periodic signal.
2
GATE ECE 2014 Set 3
Numerical
+2
-0
The z-transform of the sequence x$$\left[ n \right]$$ is given by x(z)= $${1 \over {{{(1 - 2{z^{ - 1}})}^2}}}$$ , with the region of convergence $$\left| z \right| > 2$$. Then, $$x\left[ 2 \right]$$ is ____________________.
Your input ____
3
GATE ECE 2014 Set 3
Numerical
+2
-0
Let $${H_1}(z) = {(1 - p{z^{ - 1}})^{ - 1}},{H_2}(z) = {(1 - q{z^{^{ - 1}}})^{ - 1}}$$ , H(z) =$${H_1}(z)$$ +r $${H_2}$$. The quantities p, q, r are real numbers. Consider , p=$${1 \over 2}$$, q=-$${1 \over 4}$$ $$\left| r \right|$$ <1. If the zero H(z) lies on the unit circle, the r = ____________________________.
Your input ____
4
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The input-output relationship of a causal stable LTI system is given as
𝑦[𝑛] = 𝛼 𝑦[𝑛 − 1] + $$\beta $$ x[n].
If the impulse response h[n] of this system satisfies the condition $$\sum\limits_{n = 0}^\infty h $$[n] = 2, the relationship between α and is $$\alpha $$ and $$\beta $$ is
A
𝛼 = 1 − $${\beta \over 2}$$
B
𝛼 = 1 + $${\beta \over 2}$$
C
𝛼 = 2𝛽
D
𝛼 = −2𝛽
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics