Network Theory
State Equations For Networks
Marks 51
GATE ECE 1995
Subjective
+5
-0
Show that the system shown in Fig. is a double integator. In other words, prove that the transfer gain is given by
$${{{V_0}\,(s)} \over {{V_s}\,(s)}} = - {1 \over {{{(CR\,s)}^2}}}$$, assume ideal OP-Amp
$${{{V_0}\,(s)} \over {{V_s}\,(s)}} = - {1 \over {{{(CR\,s)}^2}}}$$, assume ideal OP-Amp

2
GATE ECE 1995
Subjective
+5
-0
Find the current-transfer-ratio, $${{I_2}}$$/$${{I_1}}$$, for the network shown below (Fig). Also, mark all branch currents.


3
GATE ECE 1994
Subjective
+5
-0
Assuming that the amplifier shown in the Fig., below, is a voltage-controlled voltage source, show that the voltage transfer function of the network is given by
$$T(s) = {{{V_2}\,(s)} \over {{V_1}\,(s)}} = \,{K \over {{s^2} + \,(3 - K)\,s + 1}}$$
$$T(s) = {{{V_2}\,(s)} \over {{V_1}\,(s)}} = \,{K \over {{s^2} + \,(3 - K)\,s + 1}}$$
Questions Asked from Marks 5
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics