Network Theory
Network Elements
Marks 1Marks 2Marks 5
Network Theorems
Marks 1Marks 2Marks 5
Sinusoidal Steady State Response
Marks 1Marks 2Marks 5Marks 8
Network Graphs
Marks 1Marks 2
State Equations For Networks
Marks 5
1
GATE ECE 2025
MCQ (Single Correct Answer)
+2
-0.67

The $Z$-parameter matrix of a two port network relates the port voltages and port currents as follows:

$$ \left[\begin{array}{l} V_1 \\ V_2 \end{array}\right]=Z\left[\begin{array}{l} I_1 \\ I_2 \end{array}\right] $$

The Z-parameter matrix (with each entry in Ohms) of the network shown below is

___________.

GATE ECE 2025 Network Theory - Two Port Networks Question 1 English
A
$\left[\begin{array}{cc}\frac{10}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{10}{3}\end{array}\right]$
B
$\left[\begin{array}{cc}\frac{2}{3} & \frac{10}{3} \\ \frac{10}{3} & \frac{2}{3}\end{array}\right]$
C
$\left[\begin{array}{cc}10 & 2 \\ 2 & 10\end{array}\right]$
D
$\left[\begin{array}{cc}\frac{10}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{10}{3}\end{array}\right]$
2
GATE ECE 2024
Numerical
+2
-0

For the two port network shown below, the value of the $Y_{21}$ parameter (in Siemens) is ______.

GATE ECE 2024 Network Theory - Two Port Networks Question 2 English
Your input ____
3
GATE ECE 2023
MCQ (Single Correct Answer)
+2
-0.67

The h-parameters of a two port network are shown below. The condition for the maximum small signal voltage gain $${{{V_{out}}} \over {{V_s}}}$$ is

GATE ECE 2023 Network Theory - Two Port Networks Question 5 English

A
h$$_{11}=0$$, h$$_{12}=0$$, h$$_{21}=$$ very high and h$$_{22}=0$$
B
h$$_{11}=$$ very high, h$$_{12}=0$$, h$$_{21}=$$ very high and h$$_{22}=0$$
C
h$$_{11}=0$$, h$$_{12}=$$ very high, h$$_{21}=$$ very high and h$$_{22}=0$$
D
h$$_{11}=0$$, h$$_{12}=0$$, h$$_{21}=$$ very high and h$$_{22}=$$ very high
4
GATE ECE 2023
MCQ (Single Correct Answer)
+2
-0.67

The S-parameters of a two port network is given as

$$[S] = \left[ {\matrix{ {{S_{11}}} & {{S_{12}}} \cr {{S_{21}}} & {{S_{22}}} \cr } } \right]$$

with reference to $${Z_0}$$. Two lossless transmission line sections of electrical lengths $${\theta _1} = \beta {l_1}$$ and $${\theta _2} = \beta {l_2}$$ are added to the input and output ports for measurement purposes, respectively. The S-parameters $$[S']$$ of the resultant two port network is

GATE ECE 2023 Network Theory - Two Port Networks Question 4 English

A
$$\left[ {\matrix{ {{S_{11}}{e^{ - j2{\theta _1}}}} & {{S_{12}}{e^{ - j({\theta _1} + {\theta _2})}}} \cr {{S_{21}}{e^{ - j({\theta _1} + {\theta _2})}}} & {{S_{22}}{e^{ - j2{\theta _2}}}} \cr } } \right]$$
B
$$\left[ {\matrix{ {{S_{11}}{e^{j2{\theta _1}}}} & {{S_{12}}{e^{ - j({\theta _1} + {\theta _2})}}} \cr {{S_{21}}{e^{ - j({\theta _1} + {\theta _2})}}} & {{S_{22}}{e^{j2{\theta _2}}}} \cr } } \right]$$
C
$$\left[ {\matrix{ {{S_{11}}{e^{j2{\theta _1}}}} & {{S_{12}}{e^{j({\theta _1} + {\theta _2})}}} \cr {{S_{21}}{e^{j({\theta _1} + {\theta _2})}}} & {{S_{22}}{e^{j2{\theta _2}}}} \cr } } \right]$$
D
$$\left[ {\matrix{ {{S_{11}}{e^{ - j2{\theta _1}}}} & {{S_{12}}{e^{j({\theta _1} + {\theta _2})}}} \cr {{S_{21}}{e^{j({\theta _1} + {\theta _2})}}} & {{S_{22}}{e^{ - j2{\theta _2}}}} \cr } } \right]$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics