Power System Analysis
Per Unit System
Marks 1Marks 2
Power Generation Cost
Marks 1Marks 2Marks 5
Power System Stability
Marks 1Marks 2Marks 5
Symmetrical Components and Symmetrical and Unsymmetrical Faults
Marks 1Marks 2Marks 5
Circuit Breaker
Marks 1Marks 2Marks 5
Switch Gear and Protection
Marks 1Marks 2Marks 5
Load Flow Studies
Marks 1Marks 2Marks 5
High Voltage Dc Transmission
Marks 1
Generating Power Station
Marks 1Marks 2
Parameters and Performance of Transmission Lines
Marks 1Marks 2Marks 5
1
GATE EE 2022
MCQ (Single Correct Answer)
+1
-0.33

The valid positive, negative and zero sequence impedances (in p.u.), respectively, for a 220 kV, fully transported three-phase transmission line, from the given choices are

A
1.1, 0.15 and 0.08
B
0.15, 0.15 and 0.35
C
0.2, 0.2 and 0.2
D
0.1, 0.3 and 0.1
2
GATE EE 2018
Numerical
+1
-0
The series impedance matrix of a short three-phase transmission line in phase coordinates is $$\left[ {\matrix{ {{Z_s}} & {{Z_m}} & {{Z_m}} \cr {{Z_m}} & {{Z_s}} & {{Z_m}} \cr {{Z_m}} & {{Z_m}} & {{Z_s}} \cr } } \right]$$.

If the positive sequence impedance is (1 + 𝑗 10) $$\Omega $$, and the zero sequence is (4 + 𝑗 31) $$\Omega $$, then the imaginary part of Zm (in $$\Omega $$) is ______(up to 2 decimal places).
Your input ____
3
GATE EE 2018
Numerical
+1
-0
The positive, negative and zero sequence impedances of a 125 MVA, three-phase, 15.5 kV, star-grounded, 50 Hz generator are 𝑗0.1 pu, j0.05 pu and j0.01 pu respectively on the machine rating base. The machine is unloaded and working at the rated terminal voltage. If the grounding impedance of the generator is j0.01 pu, then the magnitude of fault current for a b-phase to ground fault (in kA) is __________ (up to 2 decimal places).
Your input ____
4
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
For a fully transposed transmission line
A
Positive, negative and zero sequence impedances are equal.
B
Positive and negative sequence impedances are equal
C
Zero and positive sequence impedances are equal
D
Negative and zero sequence impedances are equal.
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement