Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
1
GATE EE 2024
Numerical
+1
-0

The sum of the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^2$ is ______ (rounded off to the nearest integer).

Your input ____
2
GATE EE 2023
MCQ (Single Correct Answer)
+1
-0.33

For a given vector $${[\matrix{ 1 & 2 & 3 \cr } ]^T}$$, the vector normal to the plane defined by $${w^T}x = 1$$ is

A
$${[\matrix{ { - 2} & { - 2} & 2 \cr } ]^T}$$
B
$${[\matrix{ 3 & 0 & { - 1} \cr } ]^T}$$
C
$${[\matrix{ 3 & 2 & 1 \cr } ]^T}$$
D
$${[\matrix{ 1 & 2 & 3 \cr } ]^T}$$
3
GATE EE 2023
MCQ (Single Correct Answer)
+1
-0.33

In the figure, the vectors u and v are related as : Au = v by a transformation matrix A. The correct choice of A is

GATE EE 2023 Engineering Mathematics - Linear Algebra Question 7 English

A
$$\left[ {\matrix{ {{4 \over 5}} & {{3 \over 5}} \cr { - {3 \over 5}} & {{4 \over 5}} \cr } } \right]$$
B
$$\left[ {\matrix{ {{4 \over 5}} & { - {3 \over 5}} \cr {{3 \over 5}} & {{4 \over 5}} \cr } } \right]$$
C
$$\left[ {\matrix{ {{4 \over 5}} & {{3 \over 5}} \cr {{3 \over 5}} & {{4 \over 5}} \cr } } \right]$$
D
$$\left[ {\matrix{ {{4 \over 5}} & { - {3 \over 5}} \cr {{3 \over 5}} & { - {4 \over 5}} \cr } } \right]$$
4
GATE EE 2022
MCQ (Single Correct Answer)
+1
-0.33

Consider a 3 $$\times$$ 3 matrix A whose (i, j)-th element, ai,j = (i $$-$$ j)3. Then the matrix A will be

A
symmetric
B
skew-symmetric
C
unitary
D
null
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement