Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2024
Numerical
+2
-0

The relationship between any N-length sequence $x[n]$ and its corresponding N-point discrete Fourier transform $X[k]$ is defined as

$X[k] = \mathcal{F}\{x[n]\}$.

Another sequence $y[n]$ is formed as below

$y[n] = \mathcal{F}\{ \mathcal{F}\{ \mathcal{F}\{ \mathcal{F}\{x[n]\}\}\}\}\}$.

For the sequence $x[n] = \{1, 2, 1, 3\}$, the value of $Y[0]$ is _________.

Your input ____
2
GATE ECE 2023
MCQ (Single Correct Answer)
+2
-0.67

Let an input $$x[n]$$ having discrete time Fourier transform $$x({e^{j\Omega }}) = 1 - {e^{ - j\Omega }} + 2{e^{ - 3j\Omega }}$$ be passed through an LTI system. The frequency response of the LTI system is $$H({e^{j\Omega }}) = 1 - {1 \over 2}{e^{ - j2\Omega }}$$. The output $$y[n]$$ of the system is

A
$$\delta [n] + \delta [n - 1] - {1 \over 2}\delta [n - 2] - {5 \over 2}\delta [n - 3] + \delta [n - 5]$$
B
$$\delta [n] - \delta [n - 1] - {1 \over 2}\delta [n - 2] - {5 \over 2}\delta [n - 3] + \delta [n - 5]$$
C
$$\delta [n] - \delta [n - 1] - {1 \over 2}\delta [n - 2] + {5 \over 2}\delta [n - 3] - \delta [n - 5]$$
D
$$\delta [n] + \delta [n - 1] + {1 \over 2}\delta [n - 2] + {5 \over 2}\delta [n - 3] + \delta [n - 5]$$
3
GATE ECE 2022
Numerical
+2
-0

For a vector $$\overline x $$ = [x[0], x[1], ....., x[7]], the 8-point discrete Fourier transform (DFT) is denoted by $$\overline X $$ = DFT($$\overline x $$) = [X[0], X[1], ....., X[7]], where

$$X[k] = \sum\limits_{n = 0}^7 {x[n]\exp \left( { - j{{2\pi } \over 8}nk} \right)} $$.

Here, $$j = \sqrt { - 1} $$. If $$\overline x $$ = [1, 0, 0, 0, 2, 0, 0, 0] and $$\overline y $$ = DFT (DFT($$\overline x $$)), then the value of y[0] is __________ (rounded off to one decimal place).

Your input ____
4
GATE ECE 2016 Set 2
Numerical
+2
-0
The Discrete Fourier Transform (DFT) of the 4-point sequence
$$x\left[ n \right]$$= {x[0], x[1], x[2], x[3]}
= {3, 2, 3, 4 } is
x[k] = {X[0], X[1], X[2], X[3]}
= {12, 2j, 0, -2j }
If $${X_1}$$ [k] is the DFT of the 12- point sequence$${X_1}$$[n] = {3, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0 },
The value of $$\left| {{{{X_1}[8]} \over {{X_1}[11]}}} \right|$$ is-----------------------.
Your input ____
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics