Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2024
MCQ (More than One Correct Answer)
+2
-0

The radian frequency value(s) for which the discrete time sinusoidal signal $x[n] = A \cos(\Omega n + \pi/3)$ has a period of 40 is/are __.

A

0.15$\pi$

B

0.225$\pi$

C

0.3$\pi$

D

0.45$\pi$

2
GATE ECE 2023
MCQ (Single Correct Answer)
+2
-0.67

Consider a discrete-time periodic signal with period N = 5. Let the discrete-time Fourier series (DTFS) representation be $$x[n] = \sum\limits_{k = 0}^4 {{a_k}{e^{{{jk2\pi m} \over 5}}}} $$, where $${a_0} = 1,{a_1} = 3j,{a_2} = 2j,{a_3} = - 2j$$ and $${a_4} = - 3j$$. The value of the sum $$\sum\limits_{n = 0}^4 {x[n]\sin {{4\pi n} \over 5}} $$ is

A
$$-$$10
B
10
C
$$-$$2
D
2
3
GATE ECE 2018
Numerical
+2
-0
Let X[k] = k + 1, 0 ≤ k ≤ 7 be 8-point DFT of a sequence x[n],

where X[k] = $$\sum\limits_{n = 0}^{N - 1} {x\left[ n \right]{e^{ - j2\pi nk/N}}} $$.

The value (correct to two decimal places) of $$\sum\limits_{n = 0}^3 {x\left[ {2n} \right]} $$ is ___________.
Your input ____
4
GATE ECE 2017 Set 1
Numerical
+2
-0
Let h[n] be the impulse response of a discrete time linear time invariant (LTI) filter. The impulse response is given by h(0)= $${1 \over 3};h\left[ 1 \right] = {1 \over 3};h\left[ 2 \right] = {1 \over 3};\,and\,h\,\left[ n \right]$$ =0 for n < 0 and n > 2. Let H ($$\omega $$) be the Discrete- time Fourier transform (DTFT) of h[n], where $$\omega $$ is the normalized angular frequency in radians. Given that ($${\omega _o}$$) = 0 and 0 < $${\omega _0}$$ < $$\pi $$, the value of $${\omega _o}$$ (in ratians ) is equal to ____________.
Your input ____
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics