Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
1
GATE ECE 2025
Numerical
+1
-0

The function $y(t)$ satisfies

$$ t^2 y^{\prime \prime}(t)-2 t y^{\prime}(t)+2 y(t)=0 $$

where $y^{\prime}(t)$ and $y^{\prime \prime}(t)$ denote the first and second derivatives of $y(t)$, respectively. Given $y^{\prime}(0)=1$ and $y^{\prime}(1)=-1$, the maximum value of $y(t)$ over $[0,1]$ is ___________ (rounded off to two decimal places).

Your input ____
2
GATE ECE 2024
MCQ (Single Correct Answer)
+1
-0.33

The general form of the complementary function of a differential equation is given by $y(t) = (At + B)e^{-2t}$, where $A$ and $B$ are real constants determined by the initial condition. The corresponding differential equation is ____.

A

$\dfrac{d^2 y}{d t^2} + 4 \dfrac{d y}{d t} + 4 y = f(t)$

B

$\dfrac{d^2 y}{d t^2} + 4 y = f(t)$

C

$\dfrac{d^2 y}{d t^2} + 3 \dfrac{d y}{d t} + 2 y = f(t)$

D

$\dfrac{d^2 y}{d t^2} + 5 \dfrac{d y}{d t} + 6 y = f(t)$

3
GATE ECE 2022
MCQ (More than One Correct Answer)
+1
-0

Consider the following partial differential equation (PDE)

$$a{{{\partial ^2}f(x,y)} \over {\partial {x^2}}} + b{{{\partial ^2}f(x,y)} \over {\partial {y^2}}} = f(x,y)$$,

where a and b are distinct positive real numbers. Select the combination(s) of values of the real parameters $$\xi $$ and $$\eta $$ such that $$f(x,y) = {e^{\xi x + \eta y}}$$ is a solution of the given PDE.

A
$$\xi = {1 \over {\sqrt {2a} }},\eta {1 \over {\sqrt {2b} }}$$
B
$$\xi = {1 \over {\sqrt a }},\eta = 0$$
C
$$\xi = 0,\,\eta = 0$$
D
$$\xi = {1 \over {\sqrt a }},\eta {1 \over {\sqrt b }}$$
4
GATE ECE 2017 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The general solution of the differential equation $$\,\,{{{d^2}y} \over {d{x^2}}} + 2{{dy} \over {dx}} - 5y = 0\,\,\,$$ in terms of arbitrary constants $${K_1}$$ and $${K_2}$$ is
A
$${K_1}{e^{\left( { - 1 + \sqrt 6 } \right)x}} + {K_2}{e^{\left( { - 1 - \sqrt 6 } \right)x}}$$
B
$${K_1}{e^{\left( { - 1 + \sqrt 8 } \right)x}} + {K_2}{e^{\left( { - 1 - \sqrt 8 } \right)x}}$$
C
$${K_1}{e^{\left( { - 2 + \sqrt 6 } \right)x}} + {K_2}{e^{\left( { - 2 - \sqrt 6 } \right)x}}$$
D
$${K_1}{e^{\left( { - 2 + \sqrt 8 } \right)x}} + {K_2}{e^{\left( { - 2 - \sqrt 8 } \right)x}}$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics