Electromagnetic Fields
Time Varying Fields
Marks 1Marks 2Marks 4
Electrostatics
Marks 1Marks 2Marks 5
Magnetostatics
Marks 1Marks 2Marks 5
1
GATE EE 2023
Numerical
+2
-0

The closed curve shown in the figure is described by

$$r = 1 + \cos \theta $$, where $$r = \sqrt {{x^2} + {y^2}} ;x = r\cos \theta ,y = r\sin \theta $$

The magnitude of the line integral of the vector field $$F = - y\widehat i + x\widehat j$$ around the closed curve is ___________ (Round off to 2 decimal places).

GATE EE 2023 Electromagnetic Fields - Electrostatics Question 4 English

Your input ____
2
GATE EE 2023
Numerical
+2
-0

A quadratic function of two variables is given as

$$f({x_1},{x_2}) = x_1^2 + 2x_2^2 + 3{x_1} + 3{x_2} + {x_1}{x_2} + 1$$

The magnitude of the maximum rate of change of the function at the point (1, 1) is ___________ (Round off to the nearest integer).

Your input ____
3
GATE EE 2022
MCQ (Single Correct Answer)
+2
-0.67

As shown in the figure below, to concentric conducting spherical shells, centred at r = 0 and having radii r = c and r = d are maintained at potentials such that the potential V(r) at r = c is V1 and V(r) at r = d is V2. Assume that V(r) depends only on r, where r is the radial distance. The expression for V(r) in the region between r = c and r = d is

GATE EE 2022 Electromagnetic Fields - Electrostatics Question 6 English

A
$$V(r) = {{cd({V_2} - {V_1})} \over {(d - c)r}} - {{{V_1}c + {V_2}d - 2{V_1}d} \over {d - c}}$$
B
$$V(r) = {{cd({V_1} - {V_2})} \over {(d - c)r}} + {{{V_2}d - {V_1}c} \over {d - c}}$$
C
$$V(r) = {{cd({V_1} - {V_2})} \over {(d - c)r}} - {{{V_1}c - {V_2}c} \over {d - c}}$$
D
$$V(r) = {{cd({V_2} - {V_1})} \over {(d - c)r}} - {{{V_2}c - {V_1}c} \over {d - c}}$$
4
GATE EE 2018
Numerical
+2
-0
The capacitance of an air-filled parallel-plate capacitor is 60 pF. When a dielectric slab whose thickness is half the distance between the plates, is placed on one of the plates covering it entirely, the capacitance becomes 86 pF. Neglecting the fringing effects, the relative permittivity of the dielectric is _____________ (up to 2 decimal places).
Your input ____
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement