Control Systems
Signal Flow Graph and Block Diagram
Marks 1Marks 2Marks 5
Basic of Control Systems
Marks 1Marks 2
Frequency Response Analysis
Marks 1Marks 2Marks 5Marks 8Marks 10
Root Locus Diagram
Marks 1Marks 2
State Space Analysis
Marks 1Marks 2Marks 5Marks 10
1
GATE ECE 2025
MCQ (Single Correct Answer)
+2
-0.67

Let $G(s)=\frac{1}{10 s^2}$ be the transfer function of a second-order system. A controller $M(s)$ is connected to the system $G(s)$ in the configuration shown below. Consider the following statements.

(i) There exists no controller of the form $M(s)=\frac{K_I}{s}$, where $K_I$ is a positive real number, such that the closed loop system is stable.

(ii) There exists at least one controller of the form $M(s)=K_P+s K_D$, where $K_P$ and $K_D$ are positive real numbers, such that the closed loop system is stable.

Which one of the following options is correct?

GATE ECE 2025 Control Systems - Compensators Question 1 English
A
(i) is TRUE and (ii) is FALSE
B
(i) is FALSE and (ii) is TRUE
C
Both (i) and (ii) are FALSE
D
Both (i) and (ii) are TRUE
2
GATE ECE 2024
MCQ (Single Correct Answer)
+2
-1.33

A satellite attitude control system, as shown below, has a plant with transfer function $G(s) = \frac{1}{s^2}$ cascaded with a compensator $C(s) = \frac{K(s +\alpha)}{s + 4}$, where $K$ and $\alpha$ are positive real constants.

GATE ECE 2024 Control Systems - Compensators Question 2 English

In order for the closed-loop system to have poles at $-1 \pm j \sqrt{3}$, the value of $\alpha$ must be ______.

A

0

B

1

C

2

D

3

3
GATE ECE 2015 Set 1
Numerical
+2
-0
A lead compensator network includes a parallel combination of 'R' and 'C' in the feed-forward path. If the transfer function of the compensator is $${G_C}(s) = {{s + 2} \over {s + 4}}.$$ The value of RC is ____
Your input ____
4
GATE ECE 2015 Set 3
Numerical
+2
-0
The position control of a DC servo-motor is given in the figure. The values of the parameters are
Kt=1 N-m/A, Ra=$$1\Omega ,$$ La=0.1H,
J=5kg-m2, B=1 N-m/(rad/sec) and Kb=1V/(rad/sec).
The steady-state position response (in radians) due to unit impulse disturbance torque Td is ____. GATE ECE 2015 Set 3 Control Systems - Compensators Question 6 English
Your input ____
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics