1
GATE ECE 2024
MCQ (More than One Correct Answer)
+2
-0
Let $F_1$, $F_2$, and $F_3$ be functions of $(x, y, z)$. Suppose that for every given pair of points A and B in space, the line integral $\int\limits_C (F_1 dx + F_2 dy + F_3 dz)$ evaluates to the same value along any path C that starts at A and ends at B. Then which of the following is/are true?
2
GATE ECE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
If the vector function
$$\,\,\overrightarrow F = \widehat a{}_x\left( {3y - k{}_1z} \right) + \widehat a{}_y\left( {k{}_2x - 2z} \right) - \widehat a{}_z\left( {k{}_3y + z} \right)\,\,\,$$
is irrotational, then the values of the constants $$\,{k_1},\,{k_2}\,\,$$ and $$\,{k_3}$$ respectively, are
$$\,\,\overrightarrow F = \widehat a{}_x\left( {3y - k{}_1z} \right) + \widehat a{}_y\left( {k{}_2x - 2z} \right) - \widehat a{}_z\left( {k{}_3y + z} \right)\,\,\,$$
is irrotational, then the values of the constants $$\,{k_1},\,{k_2}\,\,$$ and $$\,{k_3}$$ respectively, are
3
GATE ECE 2017 Set 1
Numerical
+2
-0
Let $$\,\,\,{\rm I} = \int_c {\left( {2z\,dx + 2y\,dy + 2x\,dz} \right)} \,\,\,\,$$ where $$x, y, z$$ are real, and let $$C$$ be the straight line segment from point $$A: (0, 2, 1)$$ to point $$B: (4,1,-1).$$ The value of $${\rm I}$$ is ___________.
Your input ____
4
GATE ECE 2016 Set 2
Numerical
+2
-0
Suppose $$C$$ is the closed curve defined as the circle $$\,\,{x^2} + {y^2} = 1\,\,$$ with $$C$$ oriented anti-clockwise. The value of $$\,\,\oint {\left( {x{y^2}dx + {x^2}ydx} \right)\,\,} $$ over the curve $$C$$ equals _______.
Your input ____
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics