Engineering Mathematics
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
1
GATE CE 2022 Set 1
MCQ (Single Correct Answer)
+1
-0.33

For the equation

$${{{d^3}y} \over {d{x^3}}} + x{\left( {{{dy} \over {dx}}} \right)^{3/2}} + {x^2}y = 0$$

the correct description is

A
an ordinary differential equation of order 3 and degree 2.
B
an ordinary differential equation of order 3 and degree 3.
C
an ordinary differential equation of order 2 and degree 3.
D
an ordinary differential equation of order 3 and degree 3/2.
2
GATE CE 2017 Set 1
MCQ (Single Correct Answer)
+1
-0.3
The solution of the equation $$\,{{dQ} \over {dt}} + Q = 1$$ with $$Q=0$$ at $$t=0$$ is
A
$$Q\left( t \right) = {e^{ - t}} - 1$$
B
$$\,Q\left( t \right) = 1 + {e^{ - t}}$$
C
$$Q\left( t \right) = 1 - {e^t}$$
D
$$Q\left( t \right) = 1 - {e^{ - t}}$$
3
GATE CE 2017 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Consider the following second $$-$$order differential equation : $$\,y''\,\, - 4y' + 3y = 2t - 3{t^2}\,\,\,$$
The particular solution of the differential equation is
A
$$ - 2 - 2t - {t^2}$$
B
$$ - 2t - {t^2}$$
C
$$2t - 3{t^2}$$
D
$$ - 2 - 2t - 3{t^2}$$
4
GATE CE 2017 Set 1
Numerical
+1
-0
Consider the following partial differential equation: $$\,\,3{{{\partial ^2}\phi } \over {\partial {x^2}}} + B{{{\partial ^2}\phi } \over {\partial x\partial y}} + 3{{{\partial ^2}\phi } \over {\partial {y^2}}} + 4\phi = 0\,\,$$ For this equation to be classified as parabolic, the value of $${B^2}$$ must be ____________.
Your input ____
GATE CE Subjects
Engineering Mechanics
Strength of Materials Or Solid Mechanics
Structural Analysis
Construction Material and Management
Reinforced Cement Concrete
Steel Structures
Geotechnical Engineering
Fluid Mechanics and Hydraulic Machines
Hydrology
Irrigation
Geomatics Engineering Or Surveying
Environmental Engineering
Transportation Engineering
Engineering Mathematics
General Aptitude