Signals and Systems
Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Continuous and Discrete Time Signals
Marks 1Marks 2
Continuous Time Signal Fourier Transform
Marks 1Marks 2
Continuous Time Periodic Signal Fourier Series
Marks 1Marks 2Marks 5
Discrete Time Signal Z Transformation
Marks 1Marks 2
Miscellaneous
Marks 2
Continuous Time Signal Laplace Transform
Marks 1Marks 2
Sampling Theorem
Marks 1Marks 2
1
GATE EE 2024
MCQ (Single Correct Answer)
+2
-1.33

Consider the discrete-time systems $T_1$ and $T_2$ defined as follows:

{ $T_1 x[ n ] = x[ 0 ] + x[ 1 ] + \cdots + x[ n ] $}

{ $T_2 x[ n ] = x[ 0 ] + \frac{1}{2} x[ 1 ] + \cdots + \frac{1}{2^n} x[ n ] $}

Which one of the following statements is true?

A

$T_1$ and $T_2$ are BIBO stable.

B

$T_1$ and $T_2$ are not BIBO stable.

C

$T_1$ is BIBO stable but $T_2$ is not BIBO stable.

D

$T_1$ is not BIBO stable but $T_2$ is BIBO stable.

2
GATE EE 2022
MCQ (Single Correct Answer)
+2
-0.67

Let a causal LTI system be governed by the following differential equation $$y(t) + {1 \over 4}{{dy} \over {dt}} = 2x(t)$$, where x(t) and y(t) are the input and output respectively. Its impulse response is

A
$$2{e^{ - {1 \over 4}t}}u(t)$$
B
$$2{e^{ - 4t}}u(t)$$
C
$$8{e^{ - {1 \over 4}t}}u(t)$$
D
$$8{e^{ - 4t}}u(t)$$
3
GATE EE 2022
MCQ (Single Correct Answer)
+2
-0.67

Consider the system as shown below:

GATE EE 2022 Signals and Systems - Linear Time Invariant Systems Question 8 English

where y(t) = x(et). The system is

A
linear and causal.
B
linear and non-causal.
C
non-linear and causal.
D
non-linear and non-causal.
4
GATE EE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
For linear time invariant systems, that are Bounded Input Bounded stable, which one of the following statement is TRUE?
A
The impulse response will be integral, but may not be absolutely integrable.
B
The unit impulse response will have finite support.
C
The unit step response will be absolutely integrable.
D
The unit step response will be bounded.
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement