Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
1
GATE EE 2024
MCQ (Single Correct Answer)
+2
-1.33

Consider a vector $\vec{u} = 2\hat{x} + \hat{y} + 2\hat{z}$, where $\hat{x}$, $\hat{y}$, $\hat{z}$ represent unit vectors along the coordinate axes $x$, $y$, $z$ respectively. The directional derivative of the function $f(x, y, z) = 2\ln(xy) + \ln(yz) + 3\ln(xz)$ at the point $(x, y, z) = (1, 1, 1)$ in the direction of $\vec{u}$ is

A

0

B

$\frac{7}{5\sqrt{2}}$

C

7

D

21

2
GATE EE 2022
MCQ (Single Correct Answer)
+2
-0.67

Let $$f(x,y,z) = 4{x^2} + 7xy + 3x{z^2}$$. The direction in which the function f(x, y, z) increases most rapidly at point P = (1, 0, 2) is

A
$$20\widehat i + 7\widehat j$$
B
$$20\widehat i + 7\widehat j + 12\widehat k$$
C
$$20\widehat i + 12\widehat k$$
D
$$20\widehat i$$
3
GATE EE 2022
MCQ (Single Correct Answer)
+2
-0.67

Let $$\overrightarrow E (x,y,z) = 2{x^2}\widehat i + 5y\widehat j + 3z\widehat k$$. The value of $$\mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern-5.5pt V} {(\overrightarrow \nabla \,.\,\overrightarrow E )dV} $$, where V is the volume enclosed by the unit cube defined by 0 $$\le$$ x $$\le$$ 1, 0 $$\le$$ y $$\le$$ 1, and 0 $$\le$$ z $$\le$$ 1, is

A
3
B
8
C
10
D
5
4
GATE EE 2016 Set 2
Numerical
+2
-0
The line integral of the vector field $$\,\,F = 5xz\widehat i + \left( {3{x^2} + 2y} \right)\widehat j + {x^2}z\widehat k\,\,$$ along a path from $$(0, 0, 0)$$ to $$(1,1,1)$$ parameterized by $$\left( {t,{t^2},t} \right)$$ is _________.
Your input ____
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement