Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2025
MCQ (Single Correct Answer)
+1
-0.33

Consider a continuous-time, real-valued signal $f(t)$ whose Fourier transform $F(\omega)=$$\mathop f\limits_{ - \infty }^\infty $$ f(t) \exp (-j \omega t) d t$ exists.

Which one of the following statements is always TRUE?

A
$|F(\omega)| \leq \mathop f\limits_{ - \infty }^\infty|f(t)| d t$
B
$|F(\omega)|>\mathop f\limits_{ - \infty }^\infty|f(t)| d t$
C
$|F(\omega)| \leq \mathop f\limits_{ - \infty }^\infty f(t) d t$
D
$|F(\omega)| \geq \mathop f\limits_{ - \infty }^\infty f(t) d t$
2
GATE ECE 2023
MCQ (Single Correct Answer)
+1
-0.33

Let $$m(t)$$ be a strictly band-limited signal with bandwidth B and energy E. Assuming $${\omega _0} = 10B$$, the energy in the signal $$m(t)\cos {\omega _0}t$$ is

A
$${E \over 4}$$
B
$${E \over 2}$$
C
E
D
2E
3
GATE ECE 2023
MCQ (Single Correct Answer)
+1
-0.33

The Fourier transform $$x(\omega )$$ of $$x(t) = {e^{ - {t^2}}}$$ is

Note : $$\int\limits_{ - \infty }^\infty {{e^{ - {y^2}}}dy = \sqrt \pi } $$

A
$$\sqrt \pi {e^{{{{\omega ^2}} \over 2}}}$$
B
$${{{e^{ - {{{\omega ^2}} \over 4}}}} \over {2\sqrt \pi }}$$
C
$$\sqrt \pi {e^{ - {{{\omega ^2}} \over 4}}}$$
D
$$\sqrt \pi {e^{ - {{{\omega ^2}} \over 2}}}$$
4
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+1
-0.3
If the signal x(t) = $${{\sin (t)} \over {\pi t}}*{{\sin (t)} \over {\pi t}}$$ with * denoting the convolution operation, then x(t) is equal to
A
$${{\sin (t)} \over {\pi t}}$$
B
$${{\sin (2t)} \over {\pi t}}$$
C
$${{2\sin (t)} \over {\pi t}}$$
D
$${\left( {{{\sin (t)} \over {\pi t}}} \right)^2}$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics