Electronic Devices and VLSI
PN Junction
Marks 1Marks 2
Semiconductor Physics
Marks 1Marks 2
IC Basics and MOSFET
Marks 1Marks 2
BJT and FET
Marks 1Marks 2
1
GATE ECE 2024
Numerical
+2
-0

A non-degenerate n-type semiconductor has 5 % neutral dopant atoms. Its Fermi level is located at 0.25 eV below the conduction band ($E_C$) and the donor energy level ($E_D$) has a degeneracy of 2. Assuming the thermal voltage to be 20 mV, the difference between $E_C$ and $E_D$ (in eV, rounded off to two decimal places) is _______.

Your input ____
2
GATE ECE 2023
Numerical
+2
-0

In an extrinsic semiconductor, the hole concentration is given to be 1.5$$n_i$$ where $$n_i$$ is the intrinsic carrier concentration of 1 $$\times$$ 10$$^{10}$$ $$cm^{-3}$$. The ratio of electron to hole mobility for equal hole and electron drift current is given as ___________ (rounded off to two decimal places).

Your input ____
3
GATE ECE 2023
Numerical
+2
-0

In a semiconductor device, the Fermi-energy level is 0.35 eV above the valence band energy. The effective density of states in the valence band at T = 300 K is 1 $$\times$$ 10$$^{19}$$ cm$$^{-3}$$. The thermal equilibrium hole concentration in silicon at 400 K is _____________ $$\times$$ 10$$^{13}$$ cm$$^{-3}$$ (rounded off to two decimal places).

Given kT at 300 K is 0.026 eV.

Your input ____
4
GATE ECE 2022
MCQ (More than One Correct Answer)
+2
-0

Select the CORRECT statements regarding semiconductor devices

A
Electrons and holes are of equal density in an intrinsic semiconductor at equilibrium.
B
Collector region is generally more heavily doped than Base region in a BJT.
C
Total current is spatially constant in a two terminal electronic device in dark under steady state condition.
D
Mobility of electrons always increases with temperature in Silicon beyond 300 K.
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics