Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Let $$\,x\,\,\left( t \right)\,\,\, = \,\,\,\cos \,\,\,\left( {10\pi t} \right)\,\, + \,\,\cos \,\,\left( {30\pi t} \right)$$ be sampled at $$20\,\,\,Hz$$ and reconstructed using an ideal low-pass filter with cut-off frequency of $$20\,\,\,Hz$$. The frequency/frequencies present in the reconstructed signal is/are.
A
5 Hz and 15 Hz only
B
10 Hz and 15 Hz only
C
5 Hz, 10 Hz and 15 Hz only
D
5 Hz only
2
GATE ECE 2014 Set 3
Numerical
+1
-0
A modulated signal is $$y\left( t \right)\, = \,\,\,\,\,\,\,\,\,m\left( t \right)\,\cos \left( {40000\pi t} \right),$$ where the baseband signal $$m\left( t \right)\,$$ has frequency components less than 5 kHz only. The minimum required rate (in kHz) at which $$y\,\,\left( t \right)$$ should be sampled to recover $$m\,\,\left( t \right)$$ is ________.
Your input ____
3
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
A band-limited signal with a maximum frequency of 5 kHz is to be sampled. According to the sampling theorem, the sampling frequency which is not valid is
A
5 kHz
B
12 kHz
C
15 kHz
D
20 kHz
4
GATE ECE 2002
MCQ (Single Correct Answer)
+1
-0.3
Consider a sampled signal $$y\left( t \right) = 5 \times {10^{ - 6}}\,x\left( t \right)\,\,\sum\limits_{n = - \infty }^{ + \infty } {\delta \left( {t - n{T_s}} \right)} $$

where $$x\left( t \right) = 10\,\,\cos \,\left( {8\pi \times {{10}^3}} \right)\,\,t$$ and
$${T_s} = 100\,\,\mu \sec .$$ When $$y\left( t \right)$$ is passed through an ideal low-pass filter with a cutoff frequency of 5 KHz, the output of the filter is

A
$$5 \times {10^{ - 6}}\,\,\cos \,\left( {8\pi \times {{10}^3}} \right)\,\,t$$
B
$$5 \times {10^{ - 5}}\,\,\cos \,\left( {8\pi \times {{10}^3}} \right)\,\,t$$
C
$$5 \times {10^{ - 1}}\,\,\cos \,\left( {8\pi \times {{10}^3}} \right)\,\,t$$
D
$$10\cos \,\left( {8\pi \times {{10}^3}} \right)\,\,t$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics