Signals and Systems
Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Continuous and Discrete Time Signals
Marks 1Marks 2
Continuous Time Signal Fourier Transform
Marks 1Marks 2
Continuous Time Periodic Signal Fourier Series
Marks 1Marks 2Marks 5
Discrete Time Signal Z Transformation
Marks 1Marks 2
Miscellaneous
Marks 2
Continuous Time Signal Laplace Transform
Marks 1Marks 2
Sampling Theorem
Marks 1Marks 2
1
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
Let the Laplace transform of a function f(t) which exists for t > 0 be F1(s) and the Laplace transform of its delayed version f(1 - $$\tau$$) be F2(s). Let F1*(s) be the complex conjugate of F1(s) with the Laplace variable set as $$s=\sigma\;+\;j\omega$$. If G(s) =$$\frac{F_2\left(s\right).F_1^\ast\left(s\right)}{\left|F_1\left(s\right)\right|^2}$$ , then the inverse Laplace transform of G(s) is
A
An ideal impulse $$\delta\left(t\right)$$
B
An ideal delayed impulse $$\delta\left(t-\tau\right)$$
C
An ideal step function u(t)
D
An ideal delayed step function $$u\left(t-\tau\right)$$
2
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A function y(t) satisfies the following differential equation:$$$\frac{\operatorname dy\left(t\right)}{\operatorname dt}+\;y\left(t\right)\;=\;\delta\left(t\right)$$$ where $$\delta\left(t\right)$$ is the delta function. Assuming zero initial condition, and denoting the unit step function by u(t), y(t) can be of the form
A
et
B
e-t
C
etu(t)
D
e-tu(t)
3
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
The Laplace transform of a function f(t) is F(s) = $$\frac{5s^2+23s+6}{s\left(s^2+2s+2\right)}$$. As $$t\rightarrow\infty$$, f(t) approaches
A
3
B
5
C
17/2
D
$$\infty$$
4
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
For the equation $$\ddot x\left(t\right)+3\dot x\left(t\right)+2x\left(t\right)=5$$, the solution x(t) approaches which of the following values as t$$\rightarrow\infty$$ ?
A
0
B
5/2
C
5
D
10
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement