Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
1
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Let $$\,\,\nabla .\left( {fV} \right) = {x^2}y + {y^2}z + {z^2}x,\,\,$$ where $$f$$ and $$V$$ are scalar and vector fields respectively. If $$V=yi+zj+xk,$$ then $$\,V.\left( {\nabla f} \right)$$ is
A
$${x^2}y + {y^2}z + {z^2}x$$
B
$$2xy+2yz+2zx$$
C
$$x+y+z$$
D
$$0$$
2
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
The line integral of function $$F=yzi,$$ in the counterclockwise direction, along the circle $${x^2} + {y^2} = 1$$ at $$z=1$$ is
A
$$ - 2\pi $$
B
$$ - \pi $$
C
$$ \pi $$
D
$$2\pi $$
3
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
The two vectors $$\left[ {\matrix{ {1,} & {1,} & {1} \cr } } \right]$$ and $$\left[ {\matrix{ {1,} & {a,} & {{a^2}} \cr } } \right]$$ where $$a = {{ - 1} \over 2} + j{{\sqrt 3 } \over 2}$$ are
A
Orthonormal
B
Orthogonal
C
Parallel
D
Collinear
4
GATE EE 2010
MCQ (Single Correct Answer)
+1
-0.3
Divergence of the $$3$$ $$-$$ dimensional radial vector field $$\overrightarrow r $$ is
A
$$3$$
B
$${1 \over r}$$
C
$$\widehat i + \widehat j + \widehat k$$
D
$$3\left( {\widehat i + \widehat j + \widehat k} \right)$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement