Control Systems
Block Diagram and Signal Flow Graph
Marks 1Marks 2
Polar Nyquist and Bode Plot
Marks 1Marks 2Marks 5
State Variable Analysis
Marks 1Marks 2Marks 5
Basics of Control System
Marks 1Marks 2
Routh Hurwitz Stability
Marks 1Marks 2
Time Response Analysis
Marks 1Marks 2
Root Locus Techniques
Marks 1Marks 2Marks 5
Controller and Compensator
Marks 1Marks 2
1
GATE EE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let a causal $$LTI$$ system be characterized by the following differential equation, with initial rest condition
$${{{d^2}y} \over {d{t^2}}} + 7{{dy} \over {dt}} + 10y\left( t \right) = 4x\left( t \right) + 5{{dx\left( t \right)} \over {dt}}\,\,$$

Where, $$x(t)$$ and $$y(t)$$ are the input and output respectively. The impulse response of the system is ($$u(t)$$ is the unit step function)

A
$$2{e^{ - 2t}}u\left( t \right) - 7{e^{ - 5t}}u\left( t \right)$$
B
$$ - 2{e^{ - 2t}}u\left( t \right) + 7{e^{ - 5t}}u\left( t \right)$$
C
$$7{e^{ - 2t}}u\left( t \right) - 2{e^{ - 5t}}u\left( t \right)$$
D
$$ - 7{e^{ - 2t}}u\left( t \right) + 2{e^{ - 5t}}u\left( t \right)$$
2
GATE EE 2002
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of the system described by $${{{d^2}y} \over {d{t^2}}} + {{dy} \over {dt}} = {{du} \over {dt}} + 2u$$ with $$u$$ as input and $$y$$ as output is
A
$${{\left( {s + 2} \right)} \over {\left( {{s^2} + s} \right)}}$$
B
$${{\left( {s + 1} \right)} \over {\left( {{s^2} + s} \right)}}$$
C
$${2 \over {\left( {{s^2} + s} \right)}}$$
D
$${{2s} \over {\left( {{s^2} + s} \right)}}$$
Questions Asked from Marks 2
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement