Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2003
MCQ (Single Correct Answer)
+1
-0.3
Let $$A$$ be a sequence of $$8$$ distinct integers sorted in ascending order. How many distinct pairs of sequence, $$B$$ and $$C$$ are there such that
i) Each is sorted in ascending order.
ii) $$B$$ has $$5$$ and $$C$$ has $$3$$ elements, and
iii) The result of merging $$B$$ $$C$$ gives $$A$$?
A
$$2$$
B
$$30$$
C
$$56$$
D
$$256$$
2
GATE CSE 2002
MCQ (Single Correct Answer)
+1
-0.3
The minimum number of colors required to color the vertices of a cycle with $$n$$ nodes in such a way that no two adjacent nodes have the same colour is:
A
$$2$$
B
$$3$$
C
$$4$$
D
$$n - 2\left[ {n/2} \right] + 2$$
3
GATE CSE 2000
MCQ (Single Correct Answer)
+1
-0.3
The minimum number of cards to be dealt from an arbitrarily shuffled deck of 52 cards to guarantee that three cards are from same suit is
A
3
B
8
C
9
D
12
4
GATE CSE 2000
MCQ (Single Correct Answer)
+1
-0.3
The solution to the recurrence equation
$$T\left( {{2^k}} \right)$$ $$ = 3T\left( {{2^{k - 1}}} \right) + 1$$,
$$T\left( 1 \right) = 1$$ is:
A
$${{2^k}}$$
B
$$\left( {{3^{k + 1}} - 1} \right)/2$$
C
$${3^{\log {K \over 2}}}$$
D
$${2^{\log {K \over 3}}}$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization