Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
1
GATE EE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let $$A$$ be a $$4 \times 3$$ real matrix which rank$$2.$$ Which one of the following statement is TRUE?
A
Rank of AT is less than $$2$$
B
Rank of ATA is equal to $$2$$
C
Rank of ATA is greater than $$2$$
D
Rank of ATA can be any number between $$1$$ and $$3$$
2
GATE EE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let the eigenvalues of a $$2 \times 2$$ matrix $$A$$ be $$1,-2$$ with eigenvectors $${x_1}$$ and $${x_2}$$ respectively. Then the eigenvalues and eigenvectors of the matrix $${A^2} - 3A + 4{\rm I}$$ would respectively, be
A
$$2,14;{\,x_1},{x_2}$$
B
$$2,14;{x_1} + {x_2}:{x_1} - {x_2}$$
C
$$2,0;{\,x_1},{x_2}$$
D
$$2,0;\,{x_1} + {x_2},\,{x_1} - {x_2}$$
3
GATE EE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The maximum value of $$'a'$$ such that the matrix $$\left[ {\matrix{ { - 3} & 0 & { - 2} \cr 1 & { - 1} & 0 \cr 0 & a & { - 2} \cr } } \right]$$ has three linearly independent real eigenvectors is
A
$${2 \over {3\sqrt 3 }}$$
B
$${1 \over {3\sqrt 3 }}$$
C
$${{1 + 2\sqrt 3 } \over {3\sqrt 3 }}$$
D
$${{1 + \sqrt 3 } \over {3\sqrt 3 }}$$
4
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
$$A = \left[ {\matrix{ p & q \cr r & s \cr } } \right];B = \left[ {\matrix{ {{p^2} + {q^2}} & {pr + qs} \cr {pr + qs} & {{r^2} + {s^2}} \cr } } \right]$$
If the rank of matrix $$A$$ is $$N$$, then the rank of matrix $$B$$ is
A
$$N/2$$
B
$$N-1$$
C
$$N$$
D
$$2$$ $$N$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement