Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
1
GATE ECE 2005
MCQ (Single Correct Answer)
+1
-0.3
In what range should $$Re(s)$$ remain so that the laplace transform of the function $${e^{\left( {a + 2} \right)t + 5}}$$ exists?
A
$${\mathop{\rm Re}\nolimits} \left( s \right) > a + 2$$
B
$${\mathop{\rm Re}\nolimits} \left( s \right) > a + 7$$
C
$${\mathop{\rm Re}\nolimits} \left( s \right) < 2$$
D
$${\mathop{\rm Re}\nolimits} \left( s \right) > a + 5$$
2
GATE ECE 2003
MCQ (Single Correct Answer)
+1
-0.3
The laplace transform of $$i(t)$$ is given by
$$I\left( s \right) = {2 \over {s\left( {1 + s} \right)}}$$ As $$t \to \infty ,$$ the value of $$i(t)$$ tends to __________.
A
$$0$$
B
$$1$$
C
$$2$$
D
$$\infty $$
3
GATE ECE 1999
MCQ (Single Correct Answer)
+1
-0.3
If $$\,\,L\left\{ {f\left( t \right)} \right\} = F\left( s \right)$$ then $$\,\,\,L\left\{ {f\left( {t - T} \right)} \right\}$$ is equal to
A
$${e^{s\,T}}F\left( s \right)$$
B
$${e^{ - s\,T}}F\left( s \right)$$
C
$${{F\left( s \right)} \over {1 - {e^{s\,T}}}}$$
D
$${{F\left( s \right)} \over {1 - {e^{ - s\,T}}}}$$
4
GATE ECE 1998
MCQ (Single Correct Answer)
+1
-0.3
If $$\,\,\,L\,\,\left\{ {f\left( t \right)} \right\} = {w \over {{s^2} + {w^2}}}$$ then the value of
$$\mathop {Lim}\limits_{t \to \infty } f\left( t \right) = $$ ____________.
A
can not be determined
B
zero
C
unity
D
infinite
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics