Control Systems
Block Diagram and Signal Flow Graph
Marks 1Marks 2
Polar Nyquist and Bode Plot
Marks 1Marks 2Marks 5
State Variable Analysis
Marks 1Marks 2Marks 5
Basics of Control System
Marks 1Marks 2
Routh Hurwitz Stability
Marks 1Marks 2
Time Response Analysis
Marks 1Marks 2
Root Locus Techniques
Marks 1Marks 2Marks 5
Controller and Compensator
Marks 1Marks 2
1
GATE EE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
In the signal flow diagram given in the figure, $${u_1}$$ and $${u_2}$$ are possible inputs whereas $${y_1}$$ and $${y_2}$$ are possible outputs. When would the $$SISO$$ system derived from this diagram be controllable and observable? GATE EE 2015 Set 1 Control Systems - State Variable Analysis Question 11 English
A
When $${u_1}$$ is the only input and $${y_1}$$ is the only output
B
When $${u_2}$$ is the only input and $${y_1}$$ is the only output
C
When $${u_1}$$ is the only input and $${y_2}$$ is the only output
D
When $${u_2}$$ is the only input and $${y_2}$$ is the only output
2
GATE EE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
For the system governed by the set of equations: $$$\eqalign{ & d{x_1}/dt = 2{x_1} + {x_2} + u \cr & d{x_2}/dt = - 2{x_1} + u \cr & \,\,\,\,\,\,y = 3{x_1} \cr} $$$
the transfer function $$Y(s)/U(s)$$ is given by
A
$$3\left( {s + 1} \right)/\left( {{s^2} - 2s + 2} \right)$$
B
$$3\left( {2s + 1} \right)/\left( {{s^2} - 2s + 1} \right)$$
C
$$\left( {s + 1} \right)/\left( {{s^2} - 2s + 1} \right)$$
D
$$3\left( {2s + 1} \right)/\left( {{s^2} - 2s + 2} \right)$$
3
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The second order dynamic system $${{dX} \over {dt}} = PX + Qu,\,\,\,y = RX$$ has the matrices $$P,Q,$$ and $$R$$ as follows: $$P = \left[ {\matrix{ { - 1} & 1 \cr 0 & { - 3} \cr } } \right]\,\,Q = \left[ {\matrix{ 0 \cr 1 \cr } } \right]$$
$$R = \left[ {\matrix{ 0 & 1 \cr } } \right]$$ The system has the following controllability and observability properties:
A
Controllable and observable
B
Not controllable but observable
C
Controllable but not observable
D
Not controllable and not observable
4
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Consider the system described by the following state space equations $$$\eqalign{ & \left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] = \left[ {\matrix{ 0 & 1 \cr { - 1} & { - 1} \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 0 \cr 1 \cr } } \right]u; \cr & y = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] \cr} $$$

If $$u$$ unit step input, then the steady state error of the system is

A
$$0$$
B
$$1/2$$
C
$$2/3$$
D
$$1$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement