Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
In a connected graph, bridge is an edge whose removal disconnects a graph. Which one of the following statements is true?
A
A tree has no bridges
B
A bridge cannot be part of a simple cycle
C
Every edge of a clique with size $$ \ge 3$$ is a bridge (A clique is any complete sub-graph of a graph )
D
A graph with bridges cannot have a cycle
2
GATE CSE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Suppose L = { p, q, r, s, t } is a lattice represented by the following Hasse diagram: GATE CSE 2015 Set 1 Discrete Mathematics - Graph Theory Question 28 English For any $$x, y ∈ L$$, not necessarily distinct, $$x ∨ y$$ and x ∧ y are join and meet of x, y, respectively. Let $$L^3 = \left\{\left(x, y, z\right): x, y, z ∈ L\right\}$$ be the set of all ordered triplets of the elements of L. Let pr be the probability that an element $$\left(x, y,z\right) ∈ L^3$$ chosen equiprobably satisfies $$x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)$$. Then
A
pr = 0
B
pr = 1
C
$$0 < p_r ≤ \frac{1}{5}$$
D
$$\frac{1}{5} < p_r < 1$$
3
GATE CSE 2015 Set 1
Numerical
+2
-0
Let G be a connected planar graph with 10 vertices. If the number of edges on each face is three, then the number of edges in G is ___________.
Your input ____
4
GATE CSE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
If $$G$$ is a forest with $$n$$ vertices and $$k$$ connected components, how many edges does $$G$$ have?
A
$$\left\lfloor {n/k} \right\rfloor $$
B
$$\left\lceil {n/k} \right\rceil \,$$
C
$$n - k$$
D
$$n - k + 1$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization