Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
1
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+2
-0.6
If the vectors $${e_1} = \left( {1,0,2} \right),\,{e_2} = \left( {0,1,0} \right)$$ and $${e_3} = \left( { - 2,0,1} \right)$$ form an orthogonal basis of the three dimensional real space $${R^3},$$ then the vectors $$u = \left( {4,3, - 3} \right) \in {R^3}$$ can be expressed as
A
$$u = - {2 \over 5}{e_1} - 3{e_2} - {{11} \over 5}{e_3}$$
B
$$u = - {2 \over 5}{e_1} - 3{e_2} + {{11} \over 5}{e_3}$$
C
$$u = - {2 \over 5}{e_1} + 3{e_2} + {{11} \over 5}{e_3}$$
D
$$u = - {2 \over 5}{e_1} + 3{e_2} - {{11} \over 5}{e_3}$$
2
GATE ECE 2009
MCQ (Single Correct Answer)
+2
-0.6
The eigen values of the following matrix $$\left[ {\matrix{ { - 1} & 3 & 5 \cr { - 3} & { - 1} & 6 \cr 0 & 0 & 3 \cr } } \right]$$ are
A
$$3, 3 + 5j, 6 - j$$
B
$$-6 + 5j, 3 + j, 3 - j$$
C
$$3+j, 3-j, 5+j$$
D
$$3, -1+3j, -1-3j$$
3
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
The eigen values and the correspondinng eigen vectors of a $$2 \times 2$$ matrix are given by

Eigen value
$${\lambda _1} = 8$$
$${\lambda _2} = 4$$

Eigen vector
$${V_1} = \left[ {\matrix{ 1 \cr 1 \cr } } \right]$$
$${V_2} = \left[ {\matrix{ 1 \cr -1 \cr } } \right]$$

The matrix is

A
$$\left[ {\matrix{ 6 & 2 \cr 2 & 6 \cr } } \right]$$
B
$$\left[ {\matrix{ 4 & 6 \cr 6 & 4 \cr } } \right]$$
C
$$\left[ {\matrix{ 2 & 4 \cr 4 & 2 \cr } } \right]$$
D
$$\left[ {\matrix{ 4 & 8 \cr 8 & 4 \cr } } \right]$$
4
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
Given the matrix $$\left[ {\matrix{ { - 4} & 2 \cr 4 & 3 \cr } } \right],$$ the eigen vector is
A
$$\left[ {\matrix{ 3 \cr 2 \cr } } \right]$$
B
$$\left[ {\matrix{ 4 \cr 3 \cr } } \right]$$
C
$$\left[ {\matrix{ 2 \cr { - 1} \cr } } \right]$$
D
$$\left[ {\matrix{ { - 2} \cr 1 \cr } } \right]$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics