1
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
If the electric field of a plane wave is $$$\overrightarrow E \left( {z,t} \right) = \widehat x3\cos \left( {\omega t - kz + {{30}^ \circ }} \right) - \widehat y4\sin \left( {\omega t - kz + {{45}^ \circ }} \right)\left( {mV/m} \right)$$$

The polarization state of the plane wave is

A
left elliptical
B
left circular
C
right elliptical
D
right circular
2
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
A monochromatic plane wave of wavelength $$\lambda = 600$$ is propagating in the direction as shown in the figure below. $${\overrightarrow E _i},\,{\overrightarrow E _r}$$ and $${\overrightarrow E _t}$$ denote incident, reflected, and transmitted electric field vectors associated with the wave. GATE ECE 2013 Electromagnetics - Uniform Plane Waves Question 27 English

The expression for $${\overrightarrow E _r}$$ is

A
$$0.23{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x - z} \right)} \over {3\sqrt 2 }}}}\,\,\,V/m$$
B
$$ - {{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}z} \over 3}}}\,\,\,V/m$$
C
$$0.44{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x - z} \right)} \over {3\sqrt 2 }}}}\,\,\,V/m$$
D
$${{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x + z} \right)} \over 3}}}\,\,V/m$$
3
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
A monochromatic plane wave of wavelength $$\lambda = 600$$ is propagating in the direction as shown in the figure below. $${\overrightarrow E _i},\,{\overrightarrow E _r}$$ and $${\overrightarrow E _t}$$ denote incident, reflected, and transmitted electric field vectors associated with the wave. GATE ECE 2013 Electromagnetics - Uniform Plane Waves Question 28 English

The angle of incidence $${\theta _i}$$ and the expression for $${\overrightarrow E _i}$$ are

A
$${60^ \circ }\,\,\,and\,\,{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x + z} \right)} \over {3\sqrt 2 }}}}\,\,V/m$$
B
$${45^ \circ }\,\,\,and\,\,{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}z} \over 3}}}\,\,V/m$$
C
$${45^ \circ }\,\,\,and\,\,{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}\left( {x + z} \right)} \over {3\sqrt 2 }}}}\,\,V/m$$
D
$${60^ \circ }\,\,\,and\,\,{{{E_0}} \over {\sqrt 2 }}\left( {{{\widehat a}_x} - {{\widehat a}_z}} \right){e^{ - j{{\pi \times {{10}^4}z} \over 3}}}\,\,V/m$$
4
GATE ECE 2011
MCQ (Single Correct Answer)
+2
-0.6
The electric and magnetic fields for a TEM wave of frequency $$14 GHz$$ in a homogeneous medium of relative permittivity $${\varepsilon _r}$$ and relative permeability $${\mu _r} = 1$$ are given by $$$\overrightarrow E = {E_p}\,\,{e^{j\left( {\omega t - 280\pi y} \right)}}\,\,{\widehat u_z}\,\,V/m$$$ $$$\overrightarrow H = \,\,3\,\,{e^{j\left( {\omega \,t - 280\,\,\pi \,y} \right)}}\,\,\widehat u{\,_x}\,\,A/m$$$

Assuming the speed of light in free space to be $$3\,\, \times {10^8}\,\,\,m/s,$$ the intrinsic impedance of free space to be $$120\,\,\,\pi $$, the relative permittivity $${\varepsilon _r}$$ of the medium and the electric field amplitude $${E_p}$$ are

A
$${\varepsilon _r} = 3,\,\,{E_p} = 120\,\pi $$
B
$${\varepsilon _r} = 3,\,\,{E_p} = 360\,\pi $$
C
$${\varepsilon _r} = 9,\,\,{E_p} = 360\,\pi $$
D
$${\varepsilon _r} = 9,\,\,{E_p} = 120\,\pi $$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics