Control Systems
Block Diagram and Signal Flow Graph
Marks 1Marks 2
Polar Nyquist and Bode Plot
Marks 1Marks 2Marks 5
State Variable Analysis
Marks 1Marks 2Marks 5
Basics of Control System
Marks 1Marks 2
Routh Hurwitz Stability
Marks 1Marks 2
Time Response Analysis
Marks 1Marks 2
Root Locus Techniques
Marks 1Marks 2Marks 5
Controller and Compensator
Marks 1Marks 2
1
GATE EE 2001
MCQ (Single Correct Answer)
+1
-0.3
Given the homogeneous state-space equation $$\mathop X\limits^ \bullet = \left[ {\matrix{ { - 3} & 1 \cr 0 & { - 2} \cr } } \right]x$$ the steady state value of $$\,\,{x_{ss}}\,\, = \mathop {Lim}\limits_{t \to \infty } x\left( t \right),$$ given the initial state value of $$x\left( 0 \right) = {\left[ {10 - 10} \right]^T},\,\,is$$
A
$${x_{ss}} = \left[ {\matrix{ 0 \cr 0 \cr } } \right]$$
B
$${x_{ss}} = \left[ {\matrix{ { - 3} \cr { - 2} \cr } } \right]$$
C
$${x_{ss}} = \left[ {\matrix{ { - 10} \cr {10} \cr } } \right]$$
D
$${x_{ss}} = \left[ {\matrix{ \infty \cr \infty \cr } } \right]$$
2
GATE EE 1995
MCQ (Single Correct Answer)
+1
-0.3
A system is described by the state equation $$\mathop X\limits^ \bullet = AX + BU$$ , The output is given by $$Y=CX$$ Where $$A = \left( {\matrix{ { - 4} & { - 1} \cr 3 & { - 1} \cr } } \right)\,\,B = \left( {\matrix{ 1 \cr 1 \cr } } \right)\,\,C = \left[ {10} \right]$$

Transfer function $$G(s)$$ of the system is

A
$${s \over {{s^2} + 5s + 7}}$$
B
$${1 \over {{s^2} + 5s + 7}}$$
C
$${s \over {{s^2} + 3s + 2}}$$
D
$${1 \over {{s^2} + 3s + 2}}$$
3
GATE EE 1994
MCQ (Single Correct Answer)
+1
-0.3
The matrix of any state space equations for the transfer function $$C(s)/R(s)$$ of the system, shown below in. Figure is GATE EE 1994 Control Systems - State Variable Analysis Question 3 English
A
$$\left( {\matrix{ { - 1} & 0 \cr 0 & 1 \cr } } \right)$$
B
$$\left( {\matrix{ 1 & 0 \cr 0 & { - 1} \cr } } \right)$$
C
$$\left[ { - 1} \right]$$
D
$$\left[ { 3} \right]$$
4
GATE EE 1993
MCQ (Single Correct Answer)
+1
-0.3
The transfer function for the state variable representation $$\mathop X\limits^ \bullet = AX + BU,\,\,Y = CX + DU,$$ is given by
A
$$D + C{\left( {s{\rm I} - A} \right)^{ - 1}}\,\,B$$
B
$$B{\left( {s{\rm I} - A} \right)^{ - 1}}\,C + D$$
C
$$D{\left( {s{\rm I} - A} \right)^{ - 1}}\,B + C$$
D
$$C{\left( {sl - A} \right)^{ - 1}}\,D + B$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement