Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
1
GATE EE 2010
MCQ (Single Correct Answer)
+1
-0.3
Given $$f\left( t \right) = {L^{ - 1}}\left[ {{{3s + 1} \over {{s^3} + 4{s^2} + \left( {k - 3} \right)}}} \right].$$
$$\mathop {Lt}\limits_{t \to \propto } \,\,f\left( t \right) = 1$$ then value of $$k$$ is
A
$$1$$
B
$$2$$
C
$$3$$
D
$$4$$
2
GATE EE 2002
MCQ (Single Correct Answer)
+1
-0.3
Let $$Y(s)$$ be the Laplace transform of function $$y(t),$$ then the final value of the function is __________.
A
$$\mathop {Lim}\limits_{s \to 0} \,\,Y\left( s \right)$$
B
$$\mathop {Lim}\limits_{s \to \infty } \,\,Y\left( s \right)$$
C
$$\mathop {Lim}\limits_{s \to 0} \,s\,\,Y\left( s \right)$$
D
$$\mathop {Lim}\limits_{s \to \infty } \,s\,\,Y\left( s \right)$$
3
GATE EE 1998
MCQ (Single Correct Answer)
+1
-0.3
The Laplace transform of $$\,\left( {{t^2} - 2t} \right)\,u\left( {t - 1} \right)$$ is ______________.
A
$${2 \over {{s^3}}}{e^{ - s}} - {2 \over {{s^2}}}{e^{ - s}}$$
B
$$\,\,{2 \over {{s^3}}}{e^{ - 2s}} - {2 \over {{s^2}}}{e^{ - s}}$$
C
$${2 \over {{s^3}}}{e^{ - s}} - {2 \over s}{e^{ - s}}$$
D
None
4
GATE EE 1995
MCQ (Single Correct Answer)
+1
-0.3
The Laplace transform of $$f(t)$$ is $$F(s).$$ Given $$F\left( s \right) = {\omega \over {{s^2} + {\omega ^2}}},$$ the final value of $$f(t)$$ is __________.
A
initially
B
zero
C
one
D
none
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement