Power System Analysis
Per Unit System
Marks 1Marks 2
Power Generation Cost
Marks 1Marks 2Marks 5
Power System Stability
Marks 1Marks 2Marks 5
Symmetrical Components and Symmetrical and Unsymmetrical Faults
Marks 1Marks 2Marks 5
Circuit Breaker
Marks 1Marks 2Marks 5
Switch Gear and Protection
Marks 1Marks 2Marks 5
Load Flow Studies
Marks 1Marks 2Marks 5
High Voltage Dc Transmission
Marks 1
Generating Power Station
Marks 1Marks 2
Parameters and Performance of Transmission Lines
Marks 1Marks 2Marks 5
1
GATE EE 2012
MCQ (Single Correct Answer)
+2
-0.6
For the system shown below, SD1 and SD2 are complex power demands at bus $$1$$ and bus $$2$$ respectively. If $$\left| {{V_2}} \right| = 1$$ pu, the VAR rating of the capacitor (QG2) connected at bus $$2$$ is GATE EE 2012 Power System Analysis - Parameters and Performance of Transmission Lines Question 29 English
A
$$0.2$$ pu
B
$$0.268$$ pu
C
$$0.312$$ pu
D
$$0.4$$ pu
2
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
A lossy capacitor $${C_x}$$, rated for operation at $$5$$ $$kV,$$ $$50$$ $$Hz$$ is represented by an equivalent circuit with an ideal capacitor $${C_p}$$ in parallel with a resistor $${R_p}$$. The value $${C_p}$$ is found to be $$0.102$$ $$\mu F$$ and the value of $${R_p}$$ $$=$$ $$1.25$$ $$M\Omega .$$ Then the power loss and $$tan\delta $$ of the lossy capacitor operating at the rated voltage, respectively, are
A
$$10$$ $$W$$ and $$0.0002$$
B
$$10$$ $$W$$ and $$0.0025$$
C
$$20$$ $$W$$ and $$0.025$$
D
$$20$$ $$W$$ and $$0.04$$
3
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
A $$50$$ $$Hz$$ synchronous generator is initially connected to a long lossless transmission line which is open circuited at the receiving end. With the field voltage held constant, the generator is disconnected from the transmission line. Which of the following may be said about the steady state terminal voltage and field current of the generator?
A
The magnitude of terminal voltage decreases, and the field current does not change.
B
The magnitude of terminal voltage increases, and the field current does not change.
C
The magnitude of terminal voltage increases, and the field current increases.
D
The magnitude of terminal voltage does not change, and the field current decreases.
4
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
Consider a three-phase, $$50Hz,$$ $$11$$ $$kV$$ distribution system. Each of the conductors is suspended by an insulator string having two identical porcelain insulators. The self capacitance of the insulator is $$5$$ times the shunt capacitance between the link an the ground, as shown in the figure. The voltage across the two insulators are GATE EE 2010 Power System Analysis - Parameters and Performance of Transmission Lines Question 32 English
A
$${e_1} = 3.74\,kV,\,{e_2} = 2.61\,kV$$
B
$${e_1} = 3.46\,kV,\,{e_2} = 2.89\,kV$$
C
$${e_1} = 6.0\,kV,\,{e_2} = 4.23\,kV$$
D
$${e_1} = 5.5\,kV,\,{e_2} = 5.5\,kV$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement