Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
1
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
For the differential equation $${{{d^2}x} \over {d{t^2}}} + 6{{dx} \over {dt}} + 8x = 0$$ with initial conditions $$x(0)=1$$ and $${\left( {{{dx} \over {dt}}} \right)_{t = 0}}$$ $$=0$$ the solution
A
$$x\left( t \right) = 2{e^{ - 6t}} - {e^{ - 2t}}$$
B
$$x\left( t \right) = 2{e^{ - 2t}} - {e^{ - 4t}}$$
C
$$x\left( t \right) = - {e^{ - 6t}} - 2{e^{ - 4t}}$$
D
$$x\left( t \right) = - {e^{ - 2t}} - 2{e^{ - 4t}}$$
2
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
For the equation $$\,\,\mathop x\limits^{ \bullet \bullet } \left( t \right) + 3\mathop x\limits^ \bullet \left( t \right) + 2x\left( t \right) = 5,\,\,\,$$ the solution $$x(t)$$ approaches the following values as $$t \to \infty $$
A
$$0$$
B
$$5/2$$
C
$$5$$
D
$$10$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement