Network Theory
Network Elements
Marks 1Marks 2Marks 5
Network Theorems
Marks 1Marks 2Marks 5
Sinusoidal Steady State Response
Marks 1Marks 2Marks 5Marks 8
Network Graphs
Marks 1Marks 2
State Equations For Networks
Marks 5
1
GATE ECE 2000
Subjective
+5
-0
For the circuit in Fig., write the state equations using vc and iL as state variables. GATE ECE 2000 Network Theory - State Equations For Networks Question 1 English
2
GATE ECE 1997
Subjective
+5
-0
GATE ECE 1997 Network Theory - State Equations For Networks Question 2 English For the circuit shown in Fig. choose state variables $$X_1,\;X_2,\;X_3$$ to be $$i_{L1}\left(t\right),\;v_{C2}\left(t\right),\;i_{L3}\left(t\right)$$

(a) Write the state equations

$$$\begin{bmatrix}{\dot X}_1\\{\dot X}_2\\{\dot X}_3\end{bmatrix}\;=\;A\;\begin{bmatrix}X_1\\X_2\\X_3\end{bmatrix}\;+\;B\left[e\left(t\right)\right]$$$

(b) If e(t) = 0, t $$\geq$$ 0, $$i_{L1}\left(0\right)\;=\;0,\;v_{C2}\left(0\right)\;=\;0,\;i_{L3}\left(0\right)\;=\;1A,$$ then what would the total energy dissipated in the registors in the interval $$\left(0,\infty\right)$$ be

3
GATE ECE 1996
Subjective
+5
-0
Refer to the circuit shown in Fig. GATE ECE 1996 Network Theory - State Equations For Networks Question 3 English Choosing the voltage vC(t) across capacitor, and the current iL(t) through the inductor as state variable,i.e., $$$\left[\mathrm x\left(\mathrm t\right)\right]\;=\;\begin{bmatrix}{\mathrm v}_\mathrm C\left(\mathrm t\right)\\{\mathrm i}_\mathrm L\left(\mathrm t\right)\end{bmatrix}$$$ Write the state equation in the form $$\frac{\operatorname d\left[x\left(t\right)\right]}{\operatorname dt}\;=\;\left[A\right]\left[x\left(t\right)\right]\;+\;\left[B\right]\left[u\left(t\right)\right]$$ and find [A], [B] and [u(t)].
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics