Control Systems
Block Diagram and Signal Flow Graph
Marks 1Marks 2
Polar Nyquist and Bode Plot
Marks 1Marks 2Marks 5
State Variable Analysis
Marks 1Marks 2Marks 5
Basics of Control System
Marks 1Marks 2
Routh Hurwitz Stability
Marks 1Marks 2
Time Response Analysis
Marks 1Marks 2
Root Locus Techniques
Marks 1Marks 2Marks 5
Controller and Compensator
Marks 1Marks 2
1
GATE EE 2006
MCQ (Single Correct Answer)
+1
-0.3
For a system with the transfer function $$H\left( s \right) = {{3\left( {s - 2} \right)} \over {{s^3} + 4{s^2} - 2s + 1}},\,\,$$ the matrix $$A$$ in the state space form $$\mathop X\limits^ \bullet = AX + BU$$ is equal to
A
$$\left( {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr { - 1} & 2 & { - 4} \cr } } \right)$$
B
$$\left( {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr { - 1} & 2 & { - 4} \cr } } \right)$$
C
$$\left( {\matrix{ 0 & 1 & 0 \cr 3 & { - 2} & 1 \cr 1 & { - 2} & 4 \cr } } \right)$$
D
$$\left( {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr { - 1} & 2 & { - 4} \cr } } \right)$$
2
GATE EE 2003
MCQ (Single Correct Answer)
+1
-0.3
A second order system starts with an initial condition of $$\left( {\matrix{ 2 \cr 3 \cr } } \right)$$ without any external input. The state transition matrix for the system is given by $$\left( {\matrix{ {{e^{ - 2t}}} & 0 \cr 0 & {{e^{ - t}}} \cr } } \right).$$ The state of the system at the end of $$1$$ second is given by.
A
$$\,\,\left( {\matrix{ {0.271} \cr {1.100} \cr } } \right)$$
B
$$\left( {\matrix{ {0.135} \cr {0.368} \cr } } \right)$$
C
$$\left( {\matrix{ {0.271} \cr {0.736} \cr } } \right)$$
D
$$\left( {\matrix{ {0.135} \cr {1.100} \cr } } \right)$$
3
GATE EE 2002
MCQ (Single Correct Answer)
+1
-0.3
The state transition matrix for the system $$\mathop X\limits^ \bullet = AX\,\,$$ with initial state $$X(0)$$ is
A
$${\left( {s{\rm I} - A} \right)^{ - 1}}$$
B
$${e^{AT}}\,X\left( 0 \right)$$
C
Laplace inverse of $$\,\left[ {{{\left( {s{\rm I} - A} \right)}^{ - 1}}} \right]$$
D
Laplace inverse of $$\left[ {{{\left( {s{\rm I} - A} \right)}^{ - 1}}X\left( 0 \right)} \right]$$
4
GATE EE 2001
MCQ (Single Correct Answer)
+1
-0.3
Given the homogeneous state-space equation $$\mathop X\limits^ \bullet = \left[ {\matrix{ { - 3} & 1 \cr 0 & { - 2} \cr } } \right]x$$ the steady state value of $$\,\,{x_{ss}}\,\, = \mathop {Lim}\limits_{t \to \infty } x\left( t \right),$$ given the initial state value of $$x\left( 0 \right) = {\left[ {10 - 10} \right]^T},\,\,is$$
A
$${x_{ss}} = \left[ {\matrix{ 0 \cr 0 \cr } } \right]$$
B
$${x_{ss}} = \left[ {\matrix{ { - 3} \cr { - 2} \cr } } \right]$$
C
$${x_{ss}} = \left[ {\matrix{ { - 10} \cr {10} \cr } } \right]$$
D
$${x_{ss}} = \left[ {\matrix{ \infty \cr \infty \cr } } \right]$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement