Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2002
MCQ (Single Correct Answer)
+1
-0.3
Convolution of x(t + 5) with impulse function $$\delta \left( {t\, - \,7} \right)$$ is equal to
A
$$X\left( {t - 12} \right)$$
B
$$X\left( {t + 12} \right)$$
C
$$X\left( {t - 2} \right)$$
D
$$X\left( {t + 2} \right)$$
2
GATE ECE 2001
MCQ (Single Correct Answer)
+1
-0.3
The transfer function of a system is given by $$H\left( s \right) = {1 \over {{s^2}\left( {s - 2} \right)}}$$. The impulse response of the system is
A
$$\left( {{t^2} * {e^{ - 2t}}} \right)U\left( t \right)$$
B
$$\left( {t * {e^{2t}}} \right)U\left( t \right)$$
C
$$\left( {{t^2}{e^{ - 2t}}} \right)U\left( t \right)$$
D
$$\left( {t{e^{ - 2t}}} \right)U\left( t \right)$$
3
GATE ECE 2000
MCQ (Single Correct Answer)
+1
-0.3
A system with an input x(t) and an output y(t) is described by the relation: y(t) = t x(t). This system is
A
linear and time-invariant.
B
linear and time-varying.
C
non-linear and time-invariant.
D
non-linear and time-varying.
4
GATE ECE 1998
MCQ (Single Correct Answer)
+1
-0.3
The transfer function of a zero - order - hold system is
A
$$\left( {1/s} \right)\left( {1 + {e^{ - sT}}} \right)$$v
B
$$\left( {1/s} \right)\left( {1 - {e^{ - sT}}} \right)$$
C
$$1 - \left( {1/s} \right){e^{ - sT}}$$
D
$$1 + \left( {1/s} \right){e^{ - sT}}$$
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics