Signals and Systems
1
GATE ECE 2015 Set 1
Numerical
+2
-0
Consider two real sequences with time- origin marked by the bold value, $${x_1}\left[ n \right] = \left\{ {1,\,2,\,3,\,0} \right\}\,,\,{x_2}\left[ n \right] = \left\{ {1,\,3,\,2,\,1} \right\}$$ Let $${X_1}(k)$$ and $${X_2}(k)$$ be 4-point DFTs of $${x_1}\left[ n \right]$$ and $${x_2}\left[ n \right]$$, respectively. Another sequence $${X_3}(n)$$ is derived by taking 4-ponit inverse DFT of $${X_3}(k)$$= $${X_1}(k)$$$${X_2}(k)$$. The value of $${x_3}\left[ 2 \right]$$
Your input ____
2
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+2
-0.6
The N-point DFT X of a sequence x[n] 0 ≤ n ≤ N − 1 is given by
$$X\left[ k \right] = {1 \over {\sqrt N }}\,\,\sum\limits_{n = 0}^{N - 1} x \,[n\,]e{\,^{ - j{{2\pi } \over N}nk}}$$, 0$$ \le k \le N - 1$$
Denote this relation as X = DFT(x). For N= 4 which one of the following sequences satisfies DFT (DFT(x) ) = ___________.
$$X\left[ k \right] = {1 \over {\sqrt N }}\,\,\sum\limits_{n = 0}^{N - 1} x \,[n\,]e{\,^{ - j{{2\pi } \over N}nk}}$$, 0$$ \le k \le N - 1$$
Denote this relation as X = DFT(x). For N= 4 which one of the following sequences satisfies DFT (DFT(x) ) = ___________.
3
GATE ECE 2014 Set 1
Numerical
+2
-0
Consider a discrete time periodic signal x$$\left[ n \right]$$= $$\sin \left( {{{\pi n} \over 5}} \right)$$. Let ak be the complex Fourier serier coefficients of x$$\left[ n \right]$$. The coefficients $$\left\{ {{a_k}} \right\}$$ are non- zero when k = Bm $$ \pm $$ 1, where m is any integer. The value of B is _________________.
Your input ____
4
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
The DFT of a vector [a b c d] is the vector [α β γ δ ]. Consider the product
The DFT of the vector [ p q r s] is a scaled version of

GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics