Control Systems
Block Diagram and Signal Flow Graph
Marks 1Marks 2
Polar Nyquist and Bode Plot
Marks 1Marks 2Marks 5
State Variable Analysis
Marks 1Marks 2Marks 5
Basics of Control System
Marks 1Marks 2
Routh Hurwitz Stability
Marks 1Marks 2
Time Response Analysis
Marks 1Marks 2
Root Locus Techniques
Marks 1Marks 2Marks 5
Controller and Compensator
Marks 1Marks 2
1
GATE EE 2025
Numerical
+2
-0
Consider the state-space model $$ \begin{aligned} \dot{x}(t) & =A x(t)+B u(t) \\ y(t) & =C x(t) \end{aligned} $$ where $x(t), r(t), y(t)$ are the state, input and output, respectively. The matrices $A, B, C$ are given below $$ A=\left[\begin{array}{cc} 0 & 1 \\ -2 & -3 \end{array}\right], B=\left[\begin{array}{l} 0 \\ 1 \end{array}\right], C=\left[\begin{array}{ll} 1 & 0 \end{array}\right] $$ The sum of the magnitudes of the poles is ___________. (Round off to nearest integer)
Your input ____
2
GATE EE 2023
Numerical
+2
-0

Consider the state-space description of an LTI system with matrices

$$A = \left[ {\matrix{ 0 & 1 \cr { - 1} & { - 2} \cr } } \right],B = \left[ {\matrix{ 0 \cr 1 \cr } } \right],C = \left[ {\matrix{ 3 & { - 2} \cr } } \right],D = 1$$

For the input, $$\sin (\omega t),\omega > 0$$, the value of $$\omega$$ for which the steady-state output of the system will be zero, is ___________ (Round off to the nearest integer).

Your input ____
3
GATE EE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of the system $$Y\left( s \right)/U\left( s \right)$$ , whose state-space equations are given below is:
$$\eqalign{ & \left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet \left( t \right)} \cr {\mathop {{x_2}}\limits^ \bullet \left( t \right)} \cr } } \right] = \left[ {\matrix{ 1 & 2 \cr 2 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}\left( t \right)} \cr {{x_2}\left( t \right)} \cr } } \right] + \left[ {\matrix{ 1 \cr 2 \cr } } \right]u\left( t \right) \cr & y\left( t \right) = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}\left( t \right)} \cr {{x_2}\left( t \right)} \cr } } \right] \cr} $$
A
$${{\left( {s + 2} \right)} \over {\left( {{s^2} - 2s - 2} \right)}}$$
B
$${{\left( {s + 2} \right)} \over {\left( {{s^2} + s - 4} \right)}}$$
C
$${{\left( {s - 4} \right)} \over {\left( {{s^2} + s - 4} \right)}}$$
D
$${{\left( {s + 4} \right)} \over {\left( {{s^2} - s - 4} \right)}}$$
4
GATE EE 2017 Set 2
Numerical
+2
-0
Consider the system described by the following state space representation
$$\eqalign{ & \left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet \left( t \right)} \cr {\mathop {{x_2}}\limits^ \bullet \left( t \right)} \cr } } \right] = \left[ {\matrix{ 0 & 1 \cr 0 & { - 2} \cr } } \right]\left[ {\matrix{ {{x_1}\left( t \right)} \cr {{x_2}\left( t \right)} \cr } } \right] + \left[ {\matrix{ 0 \cr 1 \cr } } \right]u\left( t \right) \cr & y\left( t \right) = \left[ {\matrix{ 1 & 0 \cr } } \right]\left[ {\matrix{ {{x_1}\left( t \right)} \cr {{x_2}\left( t \right)} \cr } } \right] \cr} $$

If $$u(t)$$ is a unit step input and $$\left[ {\matrix{ {{x_1}\left( 0 \right)} \cr {{x_2}\left( 0 \right)} \cr } } \right] = \left[ {\matrix{ 1 \cr 0 \cr } } \right],$$ the value of output $$y(t)$$ at $$t=1$$ sec (rounded off to three decimal places) is _____________.

Your input ____
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement