Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
Consider the signal x(t) shown in Fig. Let h(t) denote the impulse response of the filter matched to x(t), with h(t) being non-zero only in the interval 0 to 4 sec. The slope of h(t) in the interval 3 < t < 4 sec is GATE ECE 2004 Signals and Systems - Transmission of Signal Through Continuous Time LTI Systems Question 20 English
A
$$1/2\,{\sec ^{ - 1}}$$
B
$$-1\,{\sec ^{ - 1}}$$
C
$$-1/2\,{\sec ^{ - 1}}$$
D
$$1\,{\sec ^{ - 1}}$$
2
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
A system has poles at 0.01 Hz, 1 Hz and 80 Hz; zeros at 5 Hz, 100 Hz and 200 Hz. The approximate phase of the system response at 20 Hz is
A
$$ - {90^ \circ }$$
B
$$ {0^ \circ }$$
C
$$ {90^ \circ }$$
D
$$ - {180^ \circ }$$
3
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
The system under consideration is an RC low -pass filter (RC-LPF) with R = 1.0 $$k\Omega $$ and C = 1.0 $$\mu F$$.

Let $${t_g}$$ (f) be the group delay function of the given RC-LPF and $${f_2}$$ = 100 Hz. Then $${t_g}$$$${(f_2)}$$ in ms, is

A
0.717
B
7.17
C
71.7
D
4.505
4
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
The system under consideration is an RC low -pass filter (RC-LPF) with R = 1.0 $$k\Omega $$ and C = 1.0 $$\mu F$$.

Let H(t) denote the frequency response of the RC-LPF. Let $${f_1}$$ be the highest frequency such that $$0 \le \left| f \right| \le {f_1},{{\left| {H({f_1})} \right|} \over {H(0)}} \ge 0.95$$. Then $${f_1}$$ (in Hz) is

A
327.8
B
163.9
C
52.2
D
104.4
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics