Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2004
MCQ (Single Correct Answer)
+2
-0.6
Consider the sequence

$$x[n] = [ - \,4 - \,j5,\,\mathop {1 + j2}\limits_ \uparrow ,\,\,4]$$

The conjugate anti-symmetric part of the sequence is

A
$$\left[ {\matrix{ { - 4 - j\,\,2.5} & {j\,2} & {4 - j\,\,2.5} \cr } } \right]$$
B
$$\left[ {\matrix{ { - j\,\,2.5} & 1 & { - j\,\,2.5} \cr } } \right]$$
C
$$\left[ {\matrix{ { - j\,\,5} & {j\,2} & 0 \cr } } \right]$$
D
$$\left[ {\matrix{ { - 4} & 1 & 4 \cr } } \right]$$
2
GATE ECE 1995
Subjective
+2
-0
Match each of the items, A, B and C, with an appropriate item from 1, 2, 3, 4 and 5

A. Fourier transform of a Gaussian function
B. Convolution of a rectangular pulse with itself
C. Current through an inductor for a step input voltage

1. Gaussian function
2. Rectangular pulse
3. Triangular pulse Ramp function
4. Rump function
5. Zero

GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics