Signals and Systems
Representation of Continuous Time Signal Fourier Series
Marks 1Marks 2
Fourier Transform
Marks 1Marks 2Marks 5
Continuous Time Signal Laplace Transform
Marks 1Marks 2Marks 5
Discrete Time Signal Fourier Series Fourier Transform
Marks 1Marks 2
Discrete Fourier Transform and Fast Fourier Transform
Marks 1Marks 2
Discrete Time Signal Z Transform
Marks 1Marks 2
Continuous Time Linear Invariant System
Marks 1Marks 2Marks 5
Discrete Time Linear Time Invariant Systems
Marks 1Marks 2Marks 4Marks 5
Transmission of Signal Through Continuous Time LTI Systems
Marks 1Marks 2Marks 5
Transmission of Signal Through Discrete Time Lti Systems
Marks 1Marks 2Marks 4
Miscellaneous
Marks 1Marks 2
1
GATE ECE 2016 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Consider the sequence
$$x\left[ n \right]$$= $${a^n}u\left[ n \right] + {b^{\partial n}}u\left[ n \right]$$ , where u[n] denotes the unit step sequence and 0<$$\left| a \right| < \left| b \right| < 1.$$
The region of convergence (ROC) of the z-transform of $$\left[ n \right]$$ is
A
$$\left| z \right| > \left| a \right|$$
B
$$\left| z \right| > \left| b \right|$$
C
$$\left| z \right| < \left| a \right|$$
D
$$\left| a \right| < \left| z \right| < \left| b \right|$$
2
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+1
-0.3
A discrete-time signal$$x\left[ n \right]\, = \delta \left[ {n - 3} \right]\, + 2\delta \left[ {n - 5} \right]$$ has z-transform x(z). If Y (z)=X (-z) is the z-transform of another signal y$$\left[ n \right]$$, then
A
$$y\left[ n \right] = x\left[ n \right]$$
B
$$y\left[ n \right] = x\left[ { - n} \right]$$
C
$$y\left[ n \right] = - x\left[ n \right]$$
D
$$y\left[ n \right] = - x\left[ { - n} \right]$$
3
GATE ECE 2015 Set 2
Numerical
+1
-0
Two casual discrete-time signals $$x\left[ n \right]$$ and $$y\left[ n \right]$$ =$$\sum\limits_{m = 0}^n x \left[ m \right]$$. If the z-transform of y$$\left[ n \right]$$=$${2 \over {z{{(z - 1)}^2}}}$$ , the value of $$x\left[ 2 \right]$$ is _____________________
Your input ____
4
GATE ECE 2014 Set 4
Numerical
+1
-0
The sequence x $$\left[ n \right]$$ = $${0.5^n}$$ u[n], where u$$\left[ n \right]$$ is the unit step sequence, is convolved with itself to obtain y $$\left[ n \right]$$ . Then $$\sum\limits_{n = \infty }^{ + \infty } y \left[ n \right]$$ is ____________.
Your input ____
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics